Cargando…

Tracking with particle filter for high-dimensional observation and state spaces /

This title concerns the use of a particle filter framework to track objects defined in high-dimensional state-spaces using high-dimensional observation spaces. Current tracking applications require us to consider complex models for objects (articulated objects, multiple objects, multiple fragments,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dubuisson, Séverine (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE, Ltd. ; John Wiley & Sons, 2015.
Colección:Digital signal and image processing series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn899739127
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu|||unuuu
008 150109s2015 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d DG1  |d IDEBK  |d E7B  |d YDXCP  |d COO  |d CDX  |d OCLCF  |d N$T  |d DEBSZ  |d OCLCO  |d DEBBG  |d IDB  |d COCUF  |d DG1  |d OCLCQ  |d MOR  |d CCO  |d LIP  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d STF  |d CEF  |d CRU  |d ICG  |d VTS  |d OCLCQ  |d INT  |d VT2  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 900306331  |a 1055404590  |a 1081293514  |a 1228557909 
020 |a 9781119004868  |q (electronic bk.) 
020 |a 1119004861  |q (electronic bk.) 
020 |a 9781119053910  |q (electronic bk.) 
020 |a 1119053919  |q (electronic bk.) 
020 |a 9781322593081  |q (MyiLibrary) 
020 |a 1322593086  |q (MyiLibrary) 
020 |z 9781848216037 
020 |z 1848216033 
029 1 |a AU@  |b 000054319138 
029 1 |a CHBIS  |b 010442336 
029 1 |a CHNEW  |b 000943879 
029 1 |a CHVBK  |b 480241090 
029 1 |a DEBBG  |b BV042990492 
029 1 |a DEBBG  |b BV043397431 
029 1 |a DEBBG  |b BV043615862 
029 1 |a DEBSZ  |b 431872732 
029 1 |a DEBSZ  |b 449476499 
029 1 |a DEBSZ  |b 485054884 
035 |a (OCoLC)899739127  |z (OCoLC)900306331  |z (OCoLC)1055404590  |z (OCoLC)1081293514  |z (OCoLC)1228557909 
050 4 |a TA1634 
050 4 |a QP363.3  |b .D384 2015 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.4/2  |2 23 
082 0 4 |a 636.1092378 
049 |a UAMI 
100 1 |a Dubuisson, Séverine,  |e author. 
245 1 0 |a Tracking with particle filter for high-dimensional observation and state spaces /  |c Séverine Dubuisson. 
264 1 |a London :  |b ISTE, Ltd. ;  |a Hoboken, NJ :  |b John Wiley & Sons,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Digital Signal and Image Processing Series 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (John Wiley, viewed January 14, 2015). 
505 0 |a Cover; Title Page; Copyright; Contents; Notations; Introduction; 1: Visual Tracking by Particle Filtering; 1.1. Introduction; 1.2. Theoretical models; 1.2.1. Recursive Bayesian filtering; 1.2.2. Sequential Monte-Carlo methods; 1.2.2.1. Importance sampling; 1.2.2.2. Particle filter; 1.2.3. Application to visual tracking; 1.2.3.1. State model; 1.2.3.2. Observation model; 1.2.3.3. Importance function; 1.2.3.4. Likelihood function; 1.2.3.5. Resampling methods; 1.3. Limits and challenges; 1.4. Scientific position; 1.5. Managing large sizes in particle filtering; 1.6. Conclusion. 
505 8 |a 2: Data Representation Models2.1. Introduction; 2.2. Computation of the likelihood function; 2.2.1. Exploitation of the spatial redundancy; 2.2.1.1. Optimal order for histogram computation; 2.2.1.2. Optimization of the integral histogram; 2.2.2. Exploitation of the temporal redundancy; 2.2.2.1. Temporal histogram; 2.2.2.2. Incremental distance between histograms; 2.3. Representation of complex information; 2.3.1. Representation of observations for movement detection, appearances and disappearances; 2.3.2. Representation of deformations; 2.3.3. Multifeature representation. 
505 8 |a 2.3.3.1. Multimodal tracking2.3.3.2. Multifragment tracking; 2.3.3.3. Multiappearance tracking; 2.4. Conclusion; 3: Tracking Models That Focus on the State Space; 3.1. Introduction; 3.2. Data association methods for multi-object tracking; 3.2.1. Particle filter with adaptive classification; 3.2.2. Energetic filter for data association; 3.3. Introducing fuzzy information into the particle filter; 3.3.1. Fuzzy representation; 3.3.2. Fuzzy spatial relations; 3.3.3. Integration of fuzzy spatial relations into the particle filter; 3.3.3.1. Application to tracking an object with erratic movements. 
505 8 |a 3.3.3.2. Application to multi-object tracking3.3.3.3. Application to tracking shapes; 3.4. Conjoint estimation of dynamic and static parameters; 3.5. Conclusion; 4: Models of Tracking by Decomposition of the State Space; 4.1. Introduction; 4.2. Ranked partitioned sampling; 4.3. Weighted partitioning with permutation of sub-particles; 4.3.1. Permutation of sub-samples; 4.3.2. Decrease the number of resamplings; 4.3.3. General algorithm and results; 4.4. Combinatorial resampling; 4.5. Conclusion; 5: Research Perspectives in Tracking and Managing Large Spaces. 
505 8 |a 5.1. Tracking for behavioral analysis: toward finer tracking of the "future" and the "now"5.2. Tracking for event detection: toward a top-down model; 5.3. Tracking to measure social interactions; Bibliography; Index. 
520 |a This title concerns the use of a particle filter framework to track objects defined in high-dimensional state-spaces using high-dimensional observation spaces. Current tracking applications require us to consider complex models for objects (articulated objects, multiple objects, multiple fragments, etc.) as well as multiple kinds of information (multiple cameras, multiple modalities, etc.). This book presents some recent research that considers the main bottleneck of particle filtering frameworks (high dimensional state spaces) for tracking in such difficult conditions. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Computer vision  |x Mathematical models. 
650 0 |a Pattern recognition systems. 
650 0 |a Particle methods (Numerical analysis) 
650 2 |a Pattern Recognition, Automated 
650 6 |a Vision par ordinateur  |x Modèles mathématiques. 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Méthodes particulaires (Analyse numérique) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computer vision  |x Mathematical models  |2 fast 
650 7 |a Particle methods (Numerical analysis)  |2 fast 
650 7 |a Pattern recognition systems  |2 fast 
758 |i has work:  |a Tracking with particle filter for high-dimensional observation and state spaces (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPXjjXqpTMX6xFGKtrhh3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dubuisson, Séverine.  |t Tracking with particle filter for high-dimensional observation and state spaces.  |d London : ISTE, Ltd. ; Hoboken, NJ : John Wiley & Sons, 2015  |z 1848216033  |z 9781848216037  |w (OCoLC)880965466 
830 0 |a Digital signal and image processing series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1895317  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28111706 
938 |a Coutts Information Services  |b COUT  |n 30543266 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1895317 
938 |a ebrary  |b EBRY  |n ebr11004206 
938 |a EBSCOhost  |b EBSC  |n 937010 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30543266 
938 |a YBP Library Services  |b YANK  |n 12235311 
938 |a YBP Library Services  |b YANK  |n 12673897 
994 |a 92  |b IZTAP