Cargando…

Tracking with particle filter for high-dimensional observation and state spaces /

This title concerns the use of a particle filter framework to track objects defined in high-dimensional state-spaces using high-dimensional observation spaces. Current tracking applications require us to consider complex models for objects (articulated objects, multiple objects, multiple fragments,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dubuisson, Séverine (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE, Ltd. ; John Wiley & Sons, 2015.
Colección:Digital signal and image processing series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; Notations; Introduction; 1: Visual Tracking by Particle Filtering; 1.1. Introduction; 1.2. Theoretical models; 1.2.1. Recursive Bayesian filtering; 1.2.2. Sequential Monte-Carlo methods; 1.2.2.1. Importance sampling; 1.2.2.2. Particle filter; 1.2.3. Application to visual tracking; 1.2.3.1. State model; 1.2.3.2. Observation model; 1.2.3.3. Importance function; 1.2.3.4. Likelihood function; 1.2.3.5. Resampling methods; 1.3. Limits and challenges; 1.4. Scientific position; 1.5. Managing large sizes in particle filtering; 1.6. Conclusion.
  • 2: Data Representation Models2.1. Introduction; 2.2. Computation of the likelihood function; 2.2.1. Exploitation of the spatial redundancy; 2.2.1.1. Optimal order for histogram computation; 2.2.1.2. Optimization of the integral histogram; 2.2.2. Exploitation of the temporal redundancy; 2.2.2.1. Temporal histogram; 2.2.2.2. Incremental distance between histograms; 2.3. Representation of complex information; 2.3.1. Representation of observations for movement detection, appearances and disappearances; 2.3.2. Representation of deformations; 2.3.3. Multifeature representation.
  • 2.3.3.1. Multimodal tracking2.3.3.2. Multifragment tracking; 2.3.3.3. Multiappearance tracking; 2.4. Conclusion; 3: Tracking Models That Focus on the State Space; 3.1. Introduction; 3.2. Data association methods for multi-object tracking; 3.2.1. Particle filter with adaptive classification; 3.2.2. Energetic filter for data association; 3.3. Introducing fuzzy information into the particle filter; 3.3.1. Fuzzy representation; 3.3.2. Fuzzy spatial relations; 3.3.3. Integration of fuzzy spatial relations into the particle filter; 3.3.3.1. Application to tracking an object with erratic movements.
  • 3.3.3.2. Application to multi-object tracking3.3.3.3. Application to tracking shapes; 3.4. Conjoint estimation of dynamic and static parameters; 3.5. Conclusion; 4: Models of Tracking by Decomposition of the State Space; 4.1. Introduction; 4.2. Ranked partitioned sampling; 4.3. Weighted partitioning with permutation of sub-particles; 4.3.1. Permutation of sub-samples; 4.3.2. Decrease the number of resamplings; 4.3.3. General algorithm and results; 4.4. Combinatorial resampling; 4.5. Conclusion; 5: Research Perspectives in Tracking and Managing Large Spaces.
  • 5.1. Tracking for behavioral analysis: toward finer tracking of the "future" and the "now"5.2. Tracking for event detection: toward a top-down model; 5.3. Tracking to measure social interactions; Bibliography; Index.