Nanomaterials via single-source precursors : synthesis, processing and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 3.3 Metal sulfides from dithiocarbamate complexes containing pyrrole moiety
- 3.3.1 Cobalt sulfide nanoparticles
- 3.3.2 Nickel sulfide nanoparticles
- 3.3.3 Nickel oxide nanoparticles
- 3.3.4 Copper sulfide nanoparticles
- 3.3.5 Mercury sulfide nanoparticles
- 3.3.6 Tin sulfide nanoparticles
- 3.4 Application of metal sulfides for the photodegradation of dyes
- 3.5 Conclusions
- Acknowledgment
- References
- Chapter 4 Theoretical studies of gas-phase decomposition of single-source precursors
- 4.1 Introduction
- 4.2 Theoretical and computational chemistry
- 4.2.1 Time-independent Sch�rdinger equation
- 4.2.2 Molecular mechanics methods
- 4.2.3 Semiempirical methods
- 4.2.4 Ab initio methods
- 4.2.5 Density functional theory
- 4.2.6 Hartree-Fock calculations
- 4.2.7 Hybrid methods
- 4.2.8 Basis sets
- 4.3 Computational methodologies
- 4.3.1 Software packages
- 4.3.2 Choice of exchange-correlation functionals
- 4.3.3 Choice of localized basis sets
- 4.3.4 Assessment of errors
- 4.4 Some recent computational studies on single-source precursors
- 4.4.1 DFT investigations M[SeSPPh2] and M2[SeSPPh2]2 (M = Li, Na, and K)
- 4.4.2 Gas-phase DFT of decomposition of zinc dichalcogenide single-source precursors
- 4.4.3 Cis/trans isomerism of Ni(II) thioselenophosphinates (Ni(SeSPMe2)2)
- 4.4.4 DFT calculations of a copper acetate-related complex
- 4.4.5 DFT studies on a Zn(II) dithiocarbamate imine adduct
- 4.4.6 DFT calculations of gas phase triethyl boron
- 4.5 Conclusions and outlook
- Acknowledgment
- References
- Section II Processing of single-source precursors into materials
- Chapter 5 Semiconductor clusters and their use as precursors to nanomaterials
- 5.1 Introduction
- 5.2 Synthesis and structure of clusters
- 5.3 Surface chemistry of clusters: Models for larger quantum dots.
- 5.4 Cation exchange studies to vary composition
- 5.5 Mechanisms of conversion
- 5.5.1 Monomer-driven pathways
- 5.5.2 Cluster assembly pathways
- 5.6 Conclusions and outlook
- References
- Chapter 6 Chalcogenoethers as convenient synthons for low-temperature solution-phase synthesis of metal chalcogenide nanoc ...
- 6.1 Introduction
- 6.2 Silylated chalcogenoethers as facile chalcogenide-transfer reagents
- 6.2.1 Binary metal chalcogenides
- 6.2.2 Ternary metal chalcogenides
- 6.3 Divergent reactivity of nonsilylated chalcogenoethers towards metal reagents
- 6.3.1 Formation of metal chalcogenide nanoparticles via reactive molecular intermediate
- 6.3.2 Formation of stable molecular complexes with low thermal decomposition temperature
- 6.4 Conclusions and future outlook
- References
- Chapter 7 Synthesis of lanthanide chalcogenide nanoparticles
- 7.1 Introduction
- 7.2 Lanthanide monochalcogenides: EuX
- 7.2.1 Nanoparticle synthesis of EuS
- 7.2.2 Nanoparticle synthesis of EuSe
- 7.2.3 Nanoparticle synthesis of anion alloys of EuS x Se 1 x
- 7.2.4 Band splitting in EuS and EuSe nanocrystals
- 7.3 Lanthanide dichalcogenide nanomaterials: LnX 2
- 7.3.1 Nanoparticle synthesis of LnSe 2
- 7.3.2 LnSe 2 phase stability
- 7.3.3 Nanosheet growth
- 7.4 Lanthanide oxychalcogenide materials
- 7.4.1 Precursor routes to Ln 2 O 2 S
- 7.4.2 Nanoparticle synthesis of Ln 2 O 2 S
- 7.4.3 Nanoparticles of lanthanide oxyselenides
- 7.5 Conclusions
- References
- Chapter 8 Organometallic single-source precursors to zinc oxide-based nanomaterials
- 8.1 Introduction
- 8.2 Reactivity of organozinc compounds
- 8.3 Organometallic single-source precursors for the preparation of zinc oxide nanostructures
- 8.3.1 Zinc-oxo clusters as potential SSPs of ZnO nanostructures.
- 8.3.2 Alkylzinc hydroxides and alkoxides as single-source precursors
- 8.3.2.1 Alkylzinc alkoxides as the most widely studied pre-designed SSPs of ZnO
- 8.3.2.2 Solid-state decomposition of alkylzinc alkoxides: Pre-designed heterocubanes and advanced mechanistic
- 8.3.2.3 Alkyl(alkoxy)zinc hydroxides as hybrid ZnO SSPs
- 8.3.2.4 Diversity of ZnO-based nanomaterials derived from alkylzinc hydroxides and alkoxides
- 8.4 Mixed-metal alkoxides as organometallic single-source precursors
- 8.5 Conclusions and final remarks
- Acknowledgment
- References
- Chapter 9 Nickel chalcogenide thin films and nanoparticles from molecular single-source precursors
- 9.1 Introduction
- 9.2 Xanthate complexes
- 9.3 Dichalcogenocarbamate complexes
- 9.4 Dichalcogenoimidophosphinate complexes
- 9.5 Chalcogenourea complexes
- 9.6 Dichalcogenophosphinate complexes
- 9.7 Dichalcogenophosphate complexes
- 9.8 Chalcogenocarboxylate complexes
- 9.9 Conclusions
- Appendix A: Useful information on relevant Ni x E y (E = S, Se, Te) phases
- Appendix B: SSP processing, properties and applications of NiO thin films
- Acknowledgments
- References
- Section III Single-source precursor-derived materials for energy conversion and catalysis
- Chapter 10 Group 15/16 single-source precursors for energy materials
- 10.1 Introduction
- 10.2 Synthesis and structures of group 15/16 single-source precursors
- 10.2.1 (R 2 M) 2 E (type I) with M:E molar ratio of 2:1
- 10.2.2 R 2 MER' (type II) and R 3 M ( V) E (type III) with M:E molar ratio of 1:1
- 10.2.3 RM(ER') 2 (type IV) with M:E molar ratio of 1:2
- 10.2.4 M(ER') 3 (type V) with M:E molar ratio of 1:3
- 10.2.5 Compounds containing chelating seleno-based ligands (types VI-IX)
- 10.3 Applications of group 15/16 single-source precursors in material synthesis
- 10.3.1 Solution-based material synthesis.