Cargando…

Nanomaterials via single-source precursors : synthesis, processing and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Barron, Andrew, Hepp, Aloysius, Apblett, Allen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_on1299143933
003 OCoLC
005 20231120010634.0
006 m o d
007 cr un|---aucuu
008 220224s2022 ne o 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OPELS  |d GZM  |d OCLCO  |d OCLCF  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1298852049  |a 1298880975  |a 1298936534 
020 |a 9780128203446  |q (electronic bk.) 
020 |a 0128203447  |q (electronic bk.) 
020 |z 9780128203408 
035 |a (OCoLC)1299143933  |z (OCoLC)1298852049  |z (OCoLC)1298880975  |z (OCoLC)1298936534 
050 4 |a TA418.9.N35 
082 0 4 |a 620.115  |2 23 
245 0 0 |a Nanomaterials via single-source precursors :  |b synthesis, processing and applications /  |c edited by Andrew Barron, Aloysius Hepp, Allen Apblett. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 8 |a 3.3 Metal sulfides from dithiocarbamate complexes containing pyrrole moiety -- 3.3.1 Cobalt sulfide nanoparticles -- 3.3.2 Nickel sulfide nanoparticles -- 3.3.3 Nickel oxide nanoparticles -- 3.3.4 Copper sulfide nanoparticles -- 3.3.5 Mercury sulfide nanoparticles -- 3.3.6 Tin sulfide nanoparticles -- 3.4 Application of metal sulfides for the photodegradation of dyes -- 3.5 Conclusions -- Acknowledgment -- References -- Chapter 4 Theoretical studies of gas-phase decomposition of single-source precursors -- 4.1 Introduction -- 4.2 Theoretical and computational chemistry -- 4.2.1 Time-independent Sch�rdinger equation -- 4.2.2 Molecular mechanics methods -- 4.2.3 Semiempirical methods -- 4.2.4 Ab initio methods -- 4.2.5 Density functional theory -- 4.2.6 Hartree-Fock calculations -- 4.2.7 Hybrid methods -- 4.2.8 Basis sets -- 4.3 Computational methodologies -- 4.3.1 Software packages -- 4.3.2 Choice of exchange-correlation functionals -- 4.3.3 Choice of localized basis sets -- 4.3.4 Assessment of errors -- 4.4 Some recent computational studies on single-source precursors -- 4.4.1 DFT investigations M[SeSPPh2] and M2[SeSPPh2]2 (M = Li, Na, and K) -- 4.4.2 Gas-phase DFT of decomposition of zinc dichalcogenide single-source precursors -- 4.4.3 Cis/trans isomerism of Ni(II) thioselenophosphinates (Ni(SeSPMe2)2) -- 4.4.4 DFT calculations of a copper acetate-related complex -- 4.4.5 DFT studies on a Zn(II) dithiocarbamate imine adduct -- 4.4.6 DFT calculations of gas phase triethyl boron -- 4.5 Conclusions and outlook -- Acknowledgment -- References -- Section II Processing of single-source precursors into materials -- Chapter 5 Semiconductor clusters and their use as precursors to nanomaterials -- 5.1 Introduction -- 5.2 Synthesis and structure of clusters -- 5.3 Surface chemistry of clusters: Models for larger quantum dots. 
505 8 |a 5.4 Cation exchange studies to vary composition -- 5.5 Mechanisms of conversion -- 5.5.1 Monomer-driven pathways -- 5.5.2 Cluster assembly pathways -- 5.6 Conclusions and outlook -- References -- Chapter 6 Chalcogenoethers as convenient synthons for low-temperature solution-phase synthesis of metal chalcogenide nanoc ... -- 6.1 Introduction -- 6.2 Silylated chalcogenoethers as facile chalcogenide-transfer reagents -- 6.2.1 Binary metal chalcogenides -- 6.2.2 Ternary metal chalcogenides -- 6.3 Divergent reactivity of nonsilylated chalcogenoethers towards metal reagents -- 6.3.1 Formation of metal chalcogenide nanoparticles via reactive molecular intermediate -- 6.3.2 Formation of stable molecular complexes with low thermal decomposition temperature -- 6.4 Conclusions and future outlook -- References -- Chapter 7 Synthesis of lanthanide chalcogenide nanoparticles -- 7.1 Introduction -- 7.2 Lanthanide monochalcogenides: EuX -- 7.2.1 Nanoparticle synthesis of EuS -- 7.2.2 Nanoparticle synthesis of EuSe -- 7.2.3 Nanoparticle synthesis of anion alloys of EuS x Se 1 x -- 7.2.4 Band splitting in EuS and EuSe nanocrystals -- 7.3 Lanthanide dichalcogenide nanomaterials: LnX 2 -- 7.3.1 Nanoparticle synthesis of LnSe 2 -- 7.3.2 LnSe 2 phase stability -- 7.3.3 Nanosheet growth -- 7.4 Lanthanide oxychalcogenide materials -- 7.4.1 Precursor routes to Ln 2 O 2 S -- 7.4.2 Nanoparticle synthesis of Ln 2 O 2 S -- 7.4.3 Nanoparticles of lanthanide oxyselenides -- 7.5 Conclusions -- References -- Chapter 8 Organometallic single-source precursors to zinc oxide-based nanomaterials -- 8.1 Introduction -- 8.2 Reactivity of organozinc compounds -- 8.3 Organometallic single-source precursors for the preparation of zinc oxide nanostructures -- 8.3.1 Zinc-oxo clusters as potential SSPs of ZnO nanostructures. 
505 8 |a 8.3.2 Alkylzinc hydroxides and alkoxides as single-source precursors -- 8.3.2.1 Alkylzinc alkoxides as the most widely studied pre-designed SSPs of ZnO -- 8.3.2.2 Solid-state decomposition of alkylzinc alkoxides: Pre-designed heterocubanes and advanced mechanistic -- 8.3.2.3 Alkyl(alkoxy)zinc hydroxides as hybrid ZnO SSPs -- 8.3.2.4 Diversity of ZnO-based nanomaterials derived from alkylzinc hydroxides and alkoxides -- 8.4 Mixed-metal alkoxides as organometallic single-source precursors -- 8.5 Conclusions and final remarks -- Acknowledgment -- References -- Chapter 9 Nickel chalcogenide thin films and nanoparticles from molecular single-source precursors -- 9.1 Introduction -- 9.2 Xanthate complexes -- 9.3 Dichalcogenocarbamate complexes -- 9.4 Dichalcogenoimidophosphinate complexes -- 9.5 Chalcogenourea complexes -- 9.6 Dichalcogenophosphinate complexes -- 9.7 Dichalcogenophosphate complexes -- 9.8 Chalcogenocarboxylate complexes -- 9.9 Conclusions -- Appendix A: Useful information on relevant Ni x E y (E = S, Se, Te) phases -- Appendix B: SSP processing, properties and applications of NiO thin films -- Acknowledgments -- References -- Section III Single-source precursor-derived materials for energy conversion and catalysis -- Chapter 10 Group 15/16 single-source precursors for energy materials -- 10.1 Introduction -- 10.2 Synthesis and structures of group 15/16 single-source precursors -- 10.2.1 (R 2 M) 2 E (type I) with M:E molar ratio of 2:1 -- 10.2.2 R 2 MER' (type II) and R 3 M ( V) E (type III) with M:E molar ratio of 1:1 -- 10.2.3 RM(ER') 2 (type IV) with M:E molar ratio of 1:2 -- 10.2.4 M(ER') 3 (type V) with M:E molar ratio of 1:3 -- 10.2.5 Compounds containing chelating seleno-based ligands (types VI-IX) -- 10.3 Applications of group 15/16 single-source precursors in material synthesis -- 10.3.1 Solution-based material synthesis. 
650 0 |a Nanostructured materials. 
650 2 |a Nanostructures  |0 (DNLM)D049329 
650 6 |a Nanomat�eriaux.  |0 (CaQQLa)201-0258061 
650 7 |a Nanostructured materials  |2 fast  |0 (OCoLC)fst01032630 
700 1 |a Barron, Andrew. 
700 1 |a Hepp, Aloysius. 
700 1 |a Apblett, Allen. 
776 0 8 |c Original  |z 0128203404  |z 9780128203408  |w (OCoLC)1201685501 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128203408  |z Texto completo