Opto-mechanical fiber optic sensors : research, technology, and applications in mechanical sensing /
Opto-mechanical Fiber Optic Sensors: Research, Technology, and Applications in Mechanical Sensing offers comprehensive coverage of the theoretical aspects of fiber optic sensors (FOS), along with current and emerging applications in the mechanical, petroleum, biomedical, biomechanical, aerospace and...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford, United Kingdom :
Butterworth-Heinemann,
[2018]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Opto-Mechanical Modeling of Fiber Bragg Grating Sensors / Hamid Alemohammad
- 1.1. Fiber Bragg Gratings
- 1.2. Opto-Mechanical Properties of Optical Fibers
- 1.3. Fiber Bragg Gratings With Structurally and Thermally Induced Index Changes
- 1.4. Light Propagation in Optical Fibers With Induced Optical Anisotropy
- 1.5. Coupled-Mode Theory
- 1.6. Derivation of Coupled-Mode Theory for Fiber Bragg Gratings With Uniform Grating
- 1.7. Coupled-Mode Theory for Superstructure Fiber Bragg Gratings
- Appendices
- References
- ch. 2 Superstructure Fiber Bragg Grating Sensors for Multiparameter Sensing / Hamid Alemohammad
- 2.1. Superstructure Fiber Bragg Gratings With Periodic On-Fiber Films
- 2.2. Opto-Mechanical Modeling
- 2.3. Simulation Results
- 2.4. Geometrical Features of Fabricated Superstructure Fiber Bragg Gratings With On-Fiber Films
- 2.5. Measurement Test Rig
- 2.6. Optical Response Analysis
- References
- ch. 3 Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests / Xija Gu
- 3.1. Introduction
- 3.2. Experiments
- 3.3. Sensor Validation Results
- 3.4. Application in the Fatigue Test of a Friction Stir-Welded Aluminum Alloy
- 3.5. Application in Asymmetric Fatigue Deformation of a Magnesium Alloy
- 3.6. Conclusions
- References
- ch. 4 Fiber Bragg Grating Strain Sensor for Microstructure in Situ Strain Measurement and Real-Time Failure Detection / Xija Gu
- 4.1. Introduction
- 4.2. Fiber Bragg Grating Basics and Sensor Fabrication
- 4.3. Comparison of Cantilever Strain Measured by a Fiber Bragg Grating Sensor and a Strain Gauge
- 4.4. Printed Circuit Board Assembly Test Sample Preparation for Bend Testing
- 4.5. Strain Gauge A and Fiber Bragg Grating Sensor Installation on Assembly Packages
- 4.6. Comparison of Ball Grid Array Substrate Strain Results by Fiber Bragg Grating Sensor Array and Finite Element Analysis Modeling
- 4.7. Four-Point Bending System and Test Setup
- 4.8. Dye-and-Pry Failure Visual Inspection
- 4.9. Test Results and Discussion
- 4.10. Conclusions
- References
- ch. 5 Distributed Brillouin Sensing Using Polymer Optical Fibers / Kentaro Nakamura
- 5.1. Introduction
- 5.2. Characterization of Brillouin Scattering in Polymer Optical Fibers
- 5.3. Distributed Measurement
- 5.4. Polymer Optical Fiber Fuse
- 5.5. Conclusion
- References
- ch. 6 Femtosecond Laser-Inscribed Fiber Bragg Gratings for Sensing Applications / Stephen J. Mihailov
- 6.1. Introduction
- 6.2. Fiber Bragg Grating
- 6.3. Fiber Bragg Grating Sensor
- 6.4. Femtosecond Laser-Induced Bragg Gratings
- 6.5. Applications of Femtosecond Laser-Induced Fiber Bragg Gratings for Sensing
- 6.6. Conclusions
- References
- ch. 7 Innovative Fiber Bragg Grating Sensors for Highly Demanding Applications: Considerations, Concepts, and Designs / Peter Martijn Toet
- 7.1. Introduction
- 7.2. Fiber Bragg Grating Sensor System
- 7.3. High-Demand Fiber Bragg Grating Sensor System Performance
- 7.4. Fiber Bragg Grating
- Based Sensors for Dedicated Operational Conditions
- 7.5. Fiber Bragg Grating
- Based Sensors for Special Physical Parameters
- Acknowledgments
- References
- ch. 8 Fiber Optic Sensors in the Oil and Gas Industry: Current and Future Applications / Christopher Baldwin
- 8.1. Introduction
- 8.2. Breakdown of the Oil and Gas Industry
- 8.3. Thermal Monitoring
- 8.4. Pressure Monitoring in the Downhole Environment
- 8.5. Flow Monitoring
- 8.6. Seismic Monitoring
- 8.7. Acoustic Monitoring
- 8.8. Future Directions
- References
- Further Reading
- ch. 9 Aerospace Applications of Optical Fiber Mechanical Sensors / Craig Lopatin
- 9.1. Introduction and Background
- 9.2. Measurements for Flight Control
- 9.3. Overview
- 9.4. Concluding Remarks
- References
- Further Reading
- ch. 10 Fiber Optical Sensors in Biomechanics / Paulo Roriz
- 10.1. Introduction
- 10.2. Why Fiber Optical Sensors in Biomechanics?
- 10.3. Applications in Biomechanics of Rigid Bodies
- 10.4. Applications in Biomechanics of Deformable Bodies
- 10.5. Applications in Biomechanics of Fluids
- 10.6. Final Remarks
- References
- ch. 11 Fiber Optic Sensors for Biomedical Applications / Emiliano Schena
- 11.1. Introduction
- 11.2. Biomedical Fiber Optic Sensor Systems
- 11.3. Optical Fiber Sensors for Diagnostics
- 11.4. Optical Fiber Sensors for Robotic Microsurgery
- 11.5. Smart Textiles and Wearable Sensors
- References.