|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1020172348 |
003 |
OCoLC |
005 |
20231120010242.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
180123s2018 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OPELS
|d YDX
|d STF
|d D6H
|d OCLCF
|d INT
|d OCLCQ
|d U3W
|d LVT
|d DKU
|d OCLCQ
|d UMI
|d G3B
|d KNOVL
|d C6I
|d UKMGB
|d VT2
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB810856
|2 bnb
|
016 |
7 |
|
|a 018674602
|2 Uk
|
019 |
|
|
|a 1020443861
|a 1082522860
|a 1235835430
|
020 |
|
|
|a 9780128031469
|q (electronic bk.)
|
020 |
|
|
|a 0128031468
|q (electronic bk.)
|
020 |
|
|
|z 9780128031315
|
020 |
|
|
|z 012803131X
|
035 |
|
|
|a (OCoLC)1020172348
|z (OCoLC)1020443861
|z (OCoLC)1082522860
|z (OCoLC)1235835430
|
050 |
|
4 |
|a TA1815
|
072 |
|
7 |
|a TEC
|x 040000
|2 bisacsh
|
082 |
0 |
4 |
|a 681.25
|2 23
|
245 |
0 |
0 |
|a Opto-mechanical fiber optic sensors :
|b research, technology, and applications in mechanical sensing /
|c editor, Hamid Alemohammad.
|
264 |
|
1 |
|a Oxford, United Kingdom :
|b Butterworth-Heinemann,
|c [2018]
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Vendor-supplied metadata.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Opto-mechanical Fiber Optic Sensors: Research, Technology, and Applications in Mechanical Sensing offers comprehensive coverage of the theoretical aspects of fiber optic sensors (FOS), along with current and emerging applications in the mechanical, petroleum, biomedical, biomechanical, aerospace and automotive industries. Special attention is given to FOS applications in harsh environments. Due to recent technology advances, optical fibers have found uses in many industrial applications. Various sectors are major targets for FOS's capable of measuring mechanical parameters, such as pressure, stress, strain and temperature. Opto-mechanical FOS's offer unique advantages, including immunity to electromagnetic interference, high fidelity and signal-to-noise ratio, low-loss remote sensing and small size.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g ch. 1
|t Opto-Mechanical Modeling of Fiber Bragg Grating Sensors /
|r Hamid Alemohammad --
|g 1.1.
|t Fiber Bragg Gratings --
|g 1.2.
|t Opto-Mechanical Properties of Optical Fibers --
|g 1.3.
|t Fiber Bragg Gratings With Structurally and Thermally Induced Index Changes --
|g 1.4.
|t Light Propagation in Optical Fibers With Induced Optical Anisotropy --
|g 1.5.
|t Coupled-Mode Theory --
|g 1.6.
|t Derivation of Coupled-Mode Theory for Fiber Bragg Gratings With Uniform Grating --
|g 1.7.
|t Coupled-Mode Theory for Superstructure Fiber Bragg Gratings --
|t Appendices --
|t References --
|g ch. 2
|t Superstructure Fiber Bragg Grating Sensors for Multiparameter Sensing /
|r Hamid Alemohammad --
|g 2.1.
|t Superstructure Fiber Bragg Gratings With Periodic On-Fiber Films --
|g 2.2.
|t Opto-Mechanical Modeling --
|g 2.3.
|t Simulation Results --
|g 2.4.
|t Geometrical Features of Fabricated Superstructure Fiber Bragg Gratings With On-Fiber Films --
|g 2.5.
|t Measurement Test Rig --
|g 2.6.
|t Optical Response Analysis --
|t References --
|g ch. 3
|t Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests /
|r Xija Gu --
|g 3.1.
|t Introduction --
|g 3.2.
|t Experiments --
|g 3.3.
|t Sensor Validation Results --
|g 3.4.
|t Application in the Fatigue Test of a Friction Stir-Welded Aluminum Alloy --
|g 3.5.
|t Application in Asymmetric Fatigue Deformation of a Magnesium Alloy --
|g 3.6.
|t Conclusions --
|t References --
|g ch. 4
|t Fiber Bragg Grating Strain Sensor for Microstructure in Situ Strain Measurement and Real-Time Failure Detection /
|r Xija Gu --
|g 4.1.
|t Introduction --
|g 4.2.
|t Fiber Bragg Grating Basics and Sensor Fabrication --
|g 4.3.
|t Comparison of Cantilever Strain Measured by a Fiber Bragg Grating Sensor and a Strain Gauge --
|g 4.4.
|t Printed Circuit Board Assembly Test Sample Preparation for Bend Testing --
|g 4.5.
|t Strain Gauge A and Fiber Bragg Grating Sensor Installation on Assembly Packages --
|g 4.6.
|t Comparison of Ball Grid Array Substrate Strain Results by Fiber Bragg Grating Sensor Array and Finite Element Analysis Modeling --
|g 4.7.
|t Four-Point Bending System and Test Setup --
|g 4.8.
|t Dye-and-Pry Failure Visual Inspection --
|g 4.9.
|t Test Results and Discussion --
|g 4.10.
|t Conclusions --
|t References --
|g ch. 5
|t Distributed Brillouin Sensing Using Polymer Optical Fibers /
|r Kentaro Nakamura --
|g 5.1.
|t Introduction --
|g 5.2.
|t Characterization of Brillouin Scattering in Polymer Optical Fibers --
|g 5.3.
|t Distributed Measurement --
|g 5.4.
|t Polymer Optical Fiber Fuse --
|g 5.5.
|t Conclusion --
|t References --
|g ch. 6
|t Femtosecond Laser-Inscribed Fiber Bragg Gratings for Sensing Applications /
|r Stephen J. Mihailov --
|g 6.1.
|t Introduction --
|g 6.2.
|t Fiber Bragg Grating --
|g 6.3.
|t Fiber Bragg Grating Sensor --
|g 6.4.
|t Femtosecond Laser-Induced Bragg Gratings --
|g 6.5.
|t Applications of Femtosecond Laser-Induced Fiber Bragg Gratings for Sensing --
|g 6.6.
|t Conclusions --
|t References --
|g ch. 7
|t Innovative Fiber Bragg Grating Sensors for Highly Demanding Applications: Considerations, Concepts, and Designs /
|r Peter Martijn Toet --
|g 7.1.
|t Introduction --
|g 7.2.
|t Fiber Bragg Grating Sensor System --
|g 7.3.
|t High-Demand Fiber Bragg Grating Sensor System Performance --
|g 7.4.
|t Fiber Bragg Grating -- Based Sensors for Dedicated Operational Conditions --
|g 7.5.
|t Fiber Bragg Grating -- Based Sensors for Special Physical Parameters --
|t Acknowledgments --
|t References --
|g ch. 8
|t Fiber Optic Sensors in the Oil and Gas Industry: Current and Future Applications /
|r Christopher Baldwin --
|g 8.1.
|t Introduction --
|g 8.2.
|t Breakdown of the Oil and Gas Industry --
|g 8.3.
|t Thermal Monitoring --
|g 8.4.
|t Pressure Monitoring in the Downhole Environment --
|g 8.5.
|t Flow Monitoring --
|g 8.6.
|t Seismic Monitoring --
|g 8.7.
|t Acoustic Monitoring --
|g 8.8.
|t Future Directions --
|t References --
|t Further Reading --
|g ch. 9
|t Aerospace Applications of Optical Fiber Mechanical Sensors /
|r Craig Lopatin --
|g 9.1.
|t Introduction and Background --
|g 9.2.
|t Measurements for Flight Control --
|g 9.3.
|t Overview --
|g 9.4.
|t Concluding Remarks --
|t References --
|t Further Reading --
|g ch. 10
|t Fiber Optical Sensors in Biomechanics /
|r Paulo Roriz --
|g 10.1.
|t Introduction --
|g 10.2.
|t Why Fiber Optical Sensors in Biomechanics? --
|g 10.3.
|t Applications in Biomechanics of Rigid Bodies --
|g 10.4.
|t Applications in Biomechanics of Deformable Bodies --
|g 10.5.
|t Applications in Biomechanics of Fluids --
|g 10.6.
|t Final Remarks --
|t References --
|g ch. 11
|t Fiber Optic Sensors for Biomedical Applications /
|r Emiliano Schena --
|g 11.1.
|t Introduction --
|g 11.2.
|t Biomedical Fiber Optic Sensor Systems --
|g 11.3.
|t Optical Fiber Sensors for Diagnostics --
|g 11.4.
|t Optical Fiber Sensors for Robotic Microsurgery --
|g 11.5.
|t Smart Textiles and Wearable Sensors --
|t References.
|
650 |
|
0 |
|a Optical fiber detectors.
|
650 |
|
0 |
|a Senses and sensation
|x Technological innovations.
|
650 |
|
6 |
|a D�etecteurs �a fibres optiques.
|0 (CaQQLa)201-0246906
|
650 |
|
6 |
|a Sens et sensations
|0 (CaQQLa)201-0006345
|x Innovations.
|0 (CaQQLa)201-0379286
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Technical & Manufacturing Industries & Trades.
|2 bisacsh
|
650 |
|
7 |
|a Optical fiber detectors
|2 fast
|0 (OCoLC)fst01046693
|
700 |
1 |
|
|a Alemohammad, Hamid,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Opto-mechanical fiber optic sensors.
|d Oxford, United Kingdom : Butterworth-Heinemann, [2018]
|z 012803131X
|z 9780128031315
|w (OCoLC)978623652
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128031315
|z Texto completo
|