Constrained Principal Component Analysis and Related Techniques /
In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? W...
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chapman and Hall/CRC,
2016.
|
Edición: | 1st. |
Colección: | Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Sumario: | In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? Wha. |
---|---|
Descripción Física: | 1 online resource (251 pages : 14 illustrations). |
ISBN: | 9781466556683 1466556684 |