Cargando…

Constrained Principal Component Analysis and Related Techniques /

In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? W...

Descripción completa

Detalles Bibliográficos
Autor principal: Takane, Yoshio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chapman and Hall/CRC, 2016.
Edición:1st.
Colección:Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_ocn991495364
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 170609s2016 xx a go 000 0 eng d
040 |a NLE  |b eng  |e rda  |c NLE  |d OCLCQ  |d UAB  |d OCLCO  |d TOH  |d OCLCA  |d OCLCO  |d OCLCQ 
019 |a 1224347964  |a 1228512174 
020 |a 9781466556683  |q (PDF) 
020 |a 1466556684  |q (PDF) 
024 8 |a KE86343 
024 8 |a 9781466556683 
029 1 |a AU@  |b 000066971713 
035 |a (OCoLC)991495364  |z (OCoLC)1224347964  |z (OCoLC)1228512174 
037 |a TANDF_272947  |b Ingram Content Group 
082 0 4 |a 519.5/35  |q OCoLC 
049 |a UAMI 
100 1 |a Takane, Yoshio,  |e author  |u Professor Emeritus, McGill University, Montreal, Quebec, Canada, and Adjunct Professorship at University of Victoria, British Columbia, Canada 
245 1 0 |a Constrained Principal Component Analysis and Related Techniques /  |c Yoshio Takane. 
250 |a 1st. 
264 1 |b Chapman and Hall/CRC,  |c 2016. 
300 |a 1 online resource (251 pages :  |b 14 illustrations). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Chapman & Hall/CRC Monographs on Statistics & Applied Probability 
520 |a In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? Wha. 
542 |f Copyright © Chapman and Hall/CRC 2014  |g 2014 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Multivariate analysis. 
650 0 |a Principal components analysis. 
650 2 |a Multivariate Analysis 
650 2 |a Principal Component Analysis 
650 6 |a Analyse multivariée. 
650 6 |a Analyse en composantes principales. 
650 7 |a Multivariate analysis.  |2 fast  |0 (OCoLC)fst01029105 
650 7 |a Principal components analysis.  |2 fast  |0 (OCoLC)fst01076520 
776 0 8 |i Print version:  |a Takane, Yoshio.  |t Constrained principal component analysis and related techniques.  |d Boca Raton : CRC, Taylor & Francis Group, [2014]  |z 9781466556669  |w (DLC) 2013039504  |w (OCoLC)778426559 
830 0 |a Chapman & Hall/CRC Monographs on Statistics & Applied Probability. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781466556683/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP