Nuclear materials science /
Concerns around climate change and the drive to net-zero carbon energy have led to a nuclear renaissance in many countries. The nuclear industry continues to warn of the increasing need for a highly trained workforce and men and women are needed to perform R&D activities in a range of areas from...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Edición: | Second edition. |
Colección: | IOP ebooks. 2020 collection.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Atomic considerations
- 1.1. Isotopes
- 1.2. Nuclear stability and radioactive decay
- 1.3. Alpha-decay ([alpha]-decay)
- 1.4. Beta-decay ([beta]-decay)
- 1.5. Beta+/positron emission or electron capture
- 1.6. Gamma-emission
- 1.7. How do the mechanisms relate to each other?
- 1.8. Radioactive half-life
- 1.9. Decay series
- 1.10. Observations on isotope stability
- 1.11. Binding energy
- 1.12. Fission and fusion
- 1.13. Spontaneous fission
- 1.14. Inducing fission and chain reactions
- 1.15. Neutron absorption, fissile and fertile isotopes
- 1.16. Increasing fission yield
- 1.17. What are the key criteria for nuclear fission?
- 2. Radiation damage
- 2.1. Key definitions
- 2.2. Radiation damage
- 2.3. Prediction of damage--Kinchin-Pease methodology
- 2.4. Implications of damage
- 2.5. Outcomes from damage
- 2.6. Modelling damage build-up in materials
- 2.7. The bulk effects of damage
- 3. Nuclear fuel part I--fuel and cladding
- 3.1. What is required from fuel in a fission reactor?
- 3.2. Reminder of the fission process
- 3.3. What are the realistic types of fuel?
- 3.4. Uranium
- 3.5. Plutonium
- 3.6. Fuel containment
- 3.7. Zirconium-based cladding
- 3.8. Iron-based cladding
- 3.9. How do fuel and cladding relate to each other?
- 4. Nuclear fuel part II--operational effects
- 4.1. Initial stages
- 4.2. Classical effects from heating
- 4.3. Fission products
- 4.4. Initial reactor operation
- 4.5. Fuel cladding under operation within the core
- 4.6. Fuel and cladding
- 4.7. Cladding corrosion
- 5. Evolution of reactor technologies
- 5.1. Generation I--prototype reactors
- 5.2. GenII--commercial reactors
- 5.3. GenerationIII/generationIII+--evolved designs
- 5.4. Molten salt reactors
- 5.5. Summary
- 6. The challenge for materials in new reactor designs
- 6.1. Generation IV--genesis
- 6.2. Reactor types
- 6.3. Material challenges in GenIV
- 6.4. Containment
- 6.5. Radiation damage
- 6.6. Alternative reactor technology
- 6.7. Travelling wave reactor
- 6.8. Thorium reactors
- 6.9. Small modular reactors
- 7. The challenges of nuclear waste
- 7.1. Sources of nuclear waste
- 7.2. Natural sources of uranium/thorium
- 7.3. Long-term effects in waste forms
- 7.4. Long-term behaviour of nuclear waste
- 7.5. Geological disposal of nuclear waste
- 7.6. Ceramics and glasses--comparison
- 7.7. Transmutation
- 8. Materials and nuclear fusion
- 8.1. Atomic background and recap
- 8.2. Requirements for fusion
- 8.3. International Thermonuclear Experimental Reactor
- 8.4. Outcomes and challenges in fusion
- 8.5. Material requirements
- 8.6. Radiation damage and the first wall
- 8.7. Sputtering
- 8.8. Gas bubble formation
- 8.9. The divertor
- 8.10. Breeding and heat generation
- 8.11. Tritium breeding
- 8.12. Challenges in fission and fusion
- 8.13. Alternative fusion technologies
- 9. Mistakes made and lessons learnt
- 9.1. Windscale--Pile-1
- 9.2. Three Mile Island--Reactor-2
- 9.3. Chernobyl--Reactor 4
- 9.4. Fukushima Daiichi
- 9.5. How do the incidents compare?
- 10. Materials characterisation
- 10.1. Length scale and characterisation
- 10.2. X-ray analysis
- 10.3. X-ray diffraction
- 10.4. Example applications of x-ray diffraction
- 10.5. Electron microscopy
- 10.6. Scanning electron microscopy
- 10.7. Transmission electron microscopy
- 10.8. Atom probe tomography (APT).