Cargando…

Nuclear materials science /

Concerns around climate change and the drive to net-zero carbon energy have led to a nuclear renaissance in many countries. The nuclear industry continues to warn of the increasing need for a highly trained workforce and men and women are needed to perform R&D activities in a range of areas from...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Whittle, Karl R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Edición:Second edition.
Colección:IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750323765
003 IOP
005 20201204101458.0
006 m eo d
007 cr cn |||m|||a
008 201204s2020 enka ob 000 0 eng d
020 |a 9780750323765  |q ebook 
020 |a 9780750323758  |q mobi 
020 |z 9780750323741  |q print 
020 |z 9780750323772  |q myPrint 
024 7 |a 10.1088/978-0-7503-2376-5  |2 doi 
035 |a (CaBNVSL)thg00082189 
035 |a (OCoLC)1225536352 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TK9185  |b .W556 2020eb 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 621.48/33  |2 23 
100 1 |a Whittle, Karl R.,  |e author. 
245 1 0 |a Nuclear materials science /  |c Karl Whittle. 
250 |a Second edition. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2020] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a IOP ebooks. [2020 collection] 
500 |a "Version: 20201101"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Atomic considerations -- 1.1. Isotopes -- 1.2. Nuclear stability and radioactive decay -- 1.3. Alpha-decay ([alpha]-decay) -- 1.4. Beta-decay ([beta]-decay) -- 1.5. Beta+/positron emission or electron capture -- 1.6. Gamma-emission -- 1.7. How do the mechanisms relate to each other? -- 1.8. Radioactive half-life -- 1.9. Decay series -- 1.10. Observations on isotope stability -- 1.11. Binding energy -- 1.12. Fission and fusion -- 1.13. Spontaneous fission -- 1.14. Inducing fission and chain reactions -- 1.15. Neutron absorption, fissile and fertile isotopes -- 1.16. Increasing fission yield -- 1.17. What are the key criteria for nuclear fission? 
505 8 |a 2. Radiation damage -- 2.1. Key definitions -- 2.2. Radiation damage -- 2.3. Prediction of damage--Kinchin-Pease methodology -- 2.4. Implications of damage -- 2.5. Outcomes from damage -- 2.6. Modelling damage build-up in materials -- 2.7. The bulk effects of damage 
505 8 |a 3. Nuclear fuel part I--fuel and cladding -- 3.1. What is required from fuel in a fission reactor? -- 3.2. Reminder of the fission process -- 3.3. What are the realistic types of fuel? -- 3.4. Uranium -- 3.5. Plutonium -- 3.6. Fuel containment -- 3.7. Zirconium-based cladding -- 3.8. Iron-based cladding -- 3.9. How do fuel and cladding relate to each other? 
505 8 |a 4. Nuclear fuel part II--operational effects -- 4.1. Initial stages -- 4.2. Classical effects from heating -- 4.3. Fission products -- 4.4. Initial reactor operation -- 4.5. Fuel cladding under operation within the core -- 4.6. Fuel and cladding -- 4.7. Cladding corrosion 
505 8 |a 5. Evolution of reactor technologies -- 5.1. Generation I--prototype reactors -- 5.2. GenII--commercial reactors -- 5.3. GenerationIII/generationIII+--evolved designs -- 5.4. Molten salt reactors -- 5.5. Summary 
505 8 |a 6. The challenge for materials in new reactor designs -- 6.1. Generation IV--genesis -- 6.2. Reactor types -- 6.3. Material challenges in GenIV -- 6.4. Containment -- 6.5. Radiation damage -- 6.6. Alternative reactor technology -- 6.7. Travelling wave reactor -- 6.8. Thorium reactors -- 6.9. Small modular reactors 
505 8 |a 7. The challenges of nuclear waste -- 7.1. Sources of nuclear waste -- 7.2. Natural sources of uranium/thorium -- 7.3. Long-term effects in waste forms -- 7.4. Long-term behaviour of nuclear waste -- 7.5. Geological disposal of nuclear waste -- 7.6. Ceramics and glasses--comparison -- 7.7. Transmutation 
505 8 |a 8. Materials and nuclear fusion -- 8.1. Atomic background and recap -- 8.2. Requirements for fusion -- 8.3. International Thermonuclear Experimental Reactor -- 8.4. Outcomes and challenges in fusion -- 8.5. Material requirements -- 8.6. Radiation damage and the first wall -- 8.7. Sputtering -- 8.8. Gas bubble formation -- 8.9. The divertor -- 8.10. Breeding and heat generation -- 8.11. Tritium breeding -- 8.12. Challenges in fission and fusion -- 8.13. Alternative fusion technologies 
505 8 |a 9. Mistakes made and lessons learnt -- 9.1. Windscale--Pile-1 -- 9.2. Three Mile Island--Reactor-2 -- 9.3. Chernobyl--Reactor 4 -- 9.4. Fukushima Daiichi -- 9.5. How do the incidents compare? 
505 8 |a 10. Materials characterisation -- 10.1. Length scale and characterisation -- 10.2. X-ray analysis -- 10.3. X-ray diffraction -- 10.4. Example applications of x-ray diffraction -- 10.5. Electron microscopy -- 10.6. Scanning electron microscopy -- 10.7. Transmission electron microscopy -- 10.8. Atom probe tomography (APT). 
520 3 |a Concerns around climate change and the drive to net-zero carbon energy have led to a nuclear renaissance in many countries. The nuclear industry continues to warn of the increasing need for a highly trained workforce and men and women are needed to perform R&D activities in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides an overview of the intersection of nuclear engineering and materials science at a level approachable by students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation, the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Featuring animated figures, this extensively updated and extended edition also includes a new chapter on materials characterisation. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Karl received obtained his undergraduate degree at the University of Kent, a masters from the University of Aberdeen, and PhD from the Open University. After completing his PhD he undertook postdoctoral appointments at the Universities of Bristol, Cambridge and Sheffield, researching into amorphous materials, and nuclear waste options. He then moved to the Australia Nuclear Science and Technology Organisation (ANSTO), where he led research into the effects on materials of radiation damage. In 2012 he moved back the UK as Senior Lecturer in Nuclear Materials at the University of Sheffield, and in 2015 he moved to the University of Liverpool as the Chair in Nuclear Engineering. Over the years he has developed research linkages across the world, with active collaborations across the world. 
588 0 |a Title from PDF title page (viewed on December 4, 2020). 
650 0 |a Nuclear reactors  |x Materials. 
650 0 |a Nuclear engineering. 
650 0 |a Nuclear fuels. 
650 7 |a Materials science.  |2 bicssc 
650 7 |a TECHNOLOGY & ENGINEERING / Materials Science / General.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750323741  |z 9780750323772 
830 0 |a IOP ebooks.  |p 2020 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-2376-5  |z Texto completo