|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1104713750 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
190615t20192019riua o 000 0 eng d |
010 |
|
|
|a 2019023423
|
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d COD
|d EBLCP
|d UIU
|d OCLCF
|d OCLCQ
|d UKAHL
|d VLY
|d N$T
|d YDX
|d OCLCQ
|d UX1
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|d OCLCL
|
019 |
|
|
|a 1262670121
|
020 |
|
|
|a 1470452472
|q (online)
|
020 |
|
|
|a 9781470452476
|q (electronic bk.)
|
020 |
|
|
|z 9781470435677
|q (print)
|
020 |
|
|
|z 1470435675
|q (print)
|
029 |
1 |
|
|a AU@
|b 000065541427
|
029 |
1 |
|
|a AU@
|b 000069668885
|
035 |
|
|
|a (OCoLC)1104713750
|z (OCoLC)1262670121
|
050 |
|
4 |
|a QA609
|b .P799 2019
|
082 |
0 |
4 |
|a 514.742
|2 23
|
084 |
|
|
|a 37E05
|a 37D25
|a 37D35
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Przytycki, Feliks.
|
245 |
1 |
0 |
|a Geometric Pressure for Multimodal Maps of the Interval /
|c Feliks Przytycki, Juan Rivera-Letelier
|
264 |
|
1 |
|a Providence :
|b American Mathematical Society,
|c 2019.
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (v, 81 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society ;
|v number 1246
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. Introduction: The main results -- 2. Preliminaries -- 3. Non-uniformly hyperbolic interval maps -- 4. Equivalence of the definitions of geometric pressure -- 5. Pressure on periodic orbits -- 6. Nice inducing schemes -- 7. Analytic dependence of geometric pressure on temperature. Equilibria -- 8. Proof of key lemma: Induced pressure -- Appendix A. More on generalized multimodal maps -- Appendix B. Uniqueness of equilibrium via inducing -- Appendix C. Conformal pressures
|
520 |
|
|
|a This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism. The authors work in a setting of generalized multimodal maps, that is, smooth maps f of a finite union of compact intervals \widehat I in \mathbb{R} into \mathbb{R} with non-flat critical points, such that on its maximal forward invariant se.
|
504 |
|
|
|a Includes bibliographical references.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mappings (Mathematics)
|
650 |
|
0 |
|a Hyperbolic spaces.
|
650 |
|
0 |
|a Riemann surfaces.
|
650 |
|
6 |
|a Applications (Mathématiques)
|
650 |
|
6 |
|a Espaces hyperboliques.
|
650 |
|
6 |
|a Surfaces de Riemann.
|
650 |
|
7 |
|a Variedades riemannianas
|2 embne
|
650 |
0 |
7 |
|a Ecuaciones diferenciales hiperbólicas
|2 embucm
|
650 |
|
7 |
|a Hyperbolic spaces
|2 fast
|
650 |
|
7 |
|a Mappings (Mathematics)
|2 fast
|
650 |
|
7 |
|a Riemann surfaces
|2 fast
|
700 |
1 |
|
|a Rivera-Letelier, Juan,
|d 1975-
|1 https://id.oclc.org/worldcat/entity/E39PCjJYg8YbHkkBdwQTmBfwmd
|
758 |
|
|
|i has work:
|a Geometric pressure for multimodal maps of the interval (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGyWHtrj6pP8HGw4c8Gd8K
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Przytycki, Feliks.
|t Geometric Pressure for Multimodal Maps of the Interval.
|d Providence : American Mathematical Society, ©2019
|z 9781470435677
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1246.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5788255
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445266
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5788255
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2158036
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 300603186
|
994 |
|
|
|a 92
|b IZTAP
|