Geometric Pressure for Multimodal Maps of the Interval /
This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Scheme...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1246. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism. The authors work in a setting of generalized multimodal maps, that is, smooth maps f of a finite union of compact intervals \widehat I in \mathbb{R} into \mathbb{R} with non-flat critical points, such that on its maximal forward invariant se. |
---|---|
Descripción Física: | 1 online resource (v, 81 pages) : illustrations |
Bibliografía: | Includes bibliographical references. |
ISBN: | 1470452472 9781470452476 |