Cargando…

Automatic Calibration and Reconstruction for Active Vision Systems

In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhang, Beiwei (Autor), Li, Y. F. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Intelligent Systems, Control and Automation: Science and Engineering, 57
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-007-2654-3
003 DE-He213
005 20220113025339.0
007 cr nn 008mamaa
008 120101s2012 ne | s |||| 0|eng d
020 |a 9789400726543  |9 978-94-007-2654-3 
024 7 |a 10.1007/978-94-007-2654-3  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Zhang, Beiwei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Automatic Calibration and Reconstruction for Active Vision Systems  |h [electronic resource] /  |c by Beiwei Zhang, Y. F. Li. 
250 |a 1st ed. 2012. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2012. 
300 |a X, 166 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems, Control and Automation: Science and Engineering,  |x 2213-8994 ;  |v 57 
505 0 |a Chapter 1 Introduction --  1.1 Vision Framework --  1.2 Background --  1.2.1 Calibrated Reconstruction --  1.2.1.1 Static Calibration based methods --  1.2.1.2 Dynamic Calibration based methods --  1.2.1.3 Relative Pose Problem --  1.2.2 Uncalibrated 3D reconstruction --  1.2.2.1 Factorization-based method --  1.2.2.2 Stratification-based method --  1.2.2.3 Using Structured Light System --  1.3 Scope --  1.3.1 System Calibration --  1.3.2 Plane-based Homography --  1.3.3 Structured Light System --  1.3.4 Omni-directional Vision System --  1.4 Objectives --  1.5 Book Structures --  Chapter 2 System Description --  2.1 System Introduction --  2.1.1 Structured Light System --  2.1.2 Omni-directional Vision System --  2.2 Component Modeling --  2.2.1 Convex Mirror --  2.2.2 Camera Model --  2.2.3 Projector Model --  2.3 Pattern Coding Strategy --  2.3.1 Introduction --  2.3.2 Color-Encoded Light Pattern --  2.3.3 Decoding the Light Pattern --  2.4 Some Preliminaries --  2.4.1 Notations and Definitions --  2.4.2 Cross Ratio --  2.4.3 Plane-based Homography --  2.4.4 Fundamental Matrix --  Chapter 3 Static Calibration --  3.1 Calibration Theory --  3.2 Polygon-based Calibration --  3.2.1 Design of the planar pattern --  3.2.2 Solving the vanishing line --  3.2.3 Solving the projection of a circle --  3.2.4 Solving the projection of circular point --  3.2.5 Algorithm --  3.2.6 Discussion --  3.3 Intersectant-Circle-based Calibration --  3.3.1 Planar Pattern Design --  3.3.2 Solution for the circular point --  3.4 Concentric-Circle-based Calibration --  3.4.1 Some Preliminaries --  3.4.2 The polynomial eigenvalue problem --  3.4.3 Orthogonality-based Algorithm --  3.4.4 Experiments --  3.4.4.1 Numerical Simulations --  3.4.4.2 Real Image Experiment --  3.5 Line-based Distortion Correction --  3.5.1 The distortion model --  3.5.2 The correction procedure --  3.5.3 Examples --  3.6 Summary --  Chapter 4 Homography-based Dynamic Calibration --  4.1 Problem Statement --  4.2 System Constraints --  4.2.1 Two Propositions --  4.3 Calibration Algorithm --  4.3.1 Solution for the Scale Factor --  4.3.2 Solutions for the Translation Vector --  4.3.3 Solution for Rotation Matrix --  4.3.4 Implementation Procedure --  4.4 Error Analyses --  4.4.1 Errors in the Homographic matrix --  4.4.2 Errors in the translation vector --  4.4.3 Errors in the rotation matrix --  4.5 Experiments Study --  4.5.1 Computer Simulation --  4.5.2 Real Data Experiment --  4.6 Summary --  Chapter 5 3D Reconstruction with Image-to-World Transformation --  5.1 Introduction --  5.2 Image-to-World Transformation matrix --  5.3 Two-Known-Plane based method --  5.3.1 Static Calibration --  5.3.2 Determining the on-line Homography --  5.3.3 Euclidean 3D Reconstruction --  5.3.4 Configuration of the two scene planes --  5.3.5 Computational Complexity Study --  5.3.6 Reconstruction Examples --  5.4 One-Known-Plane based method --  5.4.1 Calibration Tasks --  5.4.2 Generic Homography --  5.4.3 Dynamic Calibration --  5.4.4 Reconstruction Procedure --  5.4.5. Reconstruction Examples --  5.5 Summary --  Chapter 6 Catadioptric Vision System --  6.1 Introduction --  6.1.1 Wide Field-of-View System --  6.1.2 Calibration of Omni-directional Vision System --  6.1.3 Test Example --  6.2 Panoramic Stereoscopic System --  6.2.1 System Configuration --  6.2.2 Co-axis Installation --  6.2.3 System Model --  6.2.4 Epipolar geometry and 3D reconstruction --  6.2.5 Calibration Procedure --  6.2.5.1 Initialization of the Parameters --  6.2.5.2 Non-linear optimization --  6.3 Parabolic Camera System --  6.3.1 System Configuration --  6.3.2 System Modeling --  6.3.3 Calibration with Lifted-Fundamental-matrix --  6.3.3.1 The lifted fundamental matrix --  6.3.3.2 Calibration Procedure --  6.3.3.3 Simplified Case --  6.3.3.4 Discussion --  6.3.4 Calibration Based on Homographic matrix --  6.3.4.1 Plane-to-mirror Homography --  6.3.4.2 Calibration Procedure --  6.3.4.3 Calibration Test --  6.3.5 Polynomial Eigenvalue Problem --  6.3.5.1 Mirror-to-mirror Homography --  6.3.5.2 Constraints and Solutions --  6.3.5.3 Test Example --  6.4 Hyperbolic Camera System --  6.4.1 System Structure --  6.4.2 Imaging Process and Back Projection --  6.4.3 Polynomial Eigenvalue Problem --  6.5 Summary --  Chapter 7 Conclusions and Future Expectation --  7.1 Conclusions --  7.2 Future Expectations --  References. 
520 |a In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the computational efficiency and redundancy in the data can be easily incorporated to improve reliability of the estimations. This volume will therefore prove valuable and practical tool for researchers and practioners working in image processing and computer vision and related subjects. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Computer vision. 
650 0 |a Mathematics-Data processing. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Computer Vision. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Li, Y. F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789400726536 
776 0 8 |i Printed edition:  |z 9789401781008 
776 0 8 |i Printed edition:  |z 9789400726550 
830 0 |a Intelligent Systems, Control and Automation: Science and Engineering,  |x 2213-8994 ;  |v 57 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-94-007-2654-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)