Automatic Calibration and Reconstruction for Active Vision Systems
In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2012.
|
Edición: | 1st ed. 2012. |
Colección: | Intelligent Systems, Control and Automation: Science and Engineering,
57 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Chapter 1 Introduction
- 1.1 Vision Framework
- 1.2 Background
- 1.2.1 Calibrated Reconstruction
- 1.2.1.1 Static Calibration based methods
- 1.2.1.2 Dynamic Calibration based methods
- 1.2.1.3 Relative Pose Problem
- 1.2.2 Uncalibrated 3D reconstruction
- 1.2.2.1 Factorization-based method
- 1.2.2.2 Stratification-based method
- 1.2.2.3 Using Structured Light System
- 1.3 Scope
- 1.3.1 System Calibration
- 1.3.2 Plane-based Homography
- 1.3.3 Structured Light System
- 1.3.4 Omni-directional Vision System
- 1.4 Objectives
- 1.5 Book Structures
- Chapter 2 System Description
- 2.1 System Introduction
- 2.1.1 Structured Light System
- 2.1.2 Omni-directional Vision System
- 2.2 Component Modeling
- 2.2.1 Convex Mirror
- 2.2.2 Camera Model
- 2.2.3 Projector Model
- 2.3 Pattern Coding Strategy
- 2.3.1 Introduction
- 2.3.2 Color-Encoded Light Pattern
- 2.3.3 Decoding the Light Pattern
- 2.4 Some Preliminaries
- 2.4.1 Notations and Definitions
- 2.4.2 Cross Ratio
- 2.4.3 Plane-based Homography
- 2.4.4 Fundamental Matrix
- Chapter 3 Static Calibration
- 3.1 Calibration Theory
- 3.2 Polygon-based Calibration
- 3.2.1 Design of the planar pattern
- 3.2.2 Solving the vanishing line
- 3.2.3 Solving the projection of a circle
- 3.2.4 Solving the projection of circular point
- 3.2.5 Algorithm
- 3.2.6 Discussion
- 3.3 Intersectant-Circle-based Calibration
- 3.3.1 Planar Pattern Design
- 3.3.2 Solution for the circular point
- 3.4 Concentric-Circle-based Calibration
- 3.4.1 Some Preliminaries
- 3.4.2 The polynomial eigenvalue problem
- 3.4.3 Orthogonality-based Algorithm
- 3.4.4 Experiments
- 3.4.4.1 Numerical Simulations
- 3.4.4.2 Real Image Experiment
- 3.5 Line-based Distortion Correction
- 3.5.1 The distortion model
- 3.5.2 The correction procedure
- 3.5.3 Examples
- 3.6 Summary
- Chapter 4 Homography-based Dynamic Calibration
- 4.1 Problem Statement
- 4.2 System Constraints
- 4.2.1 Two Propositions
- 4.3 Calibration Algorithm
- 4.3.1 Solution for the Scale Factor
- 4.3.2 Solutions for the Translation Vector
- 4.3.3 Solution for Rotation Matrix
- 4.3.4 Implementation Procedure
- 4.4 Error Analyses
- 4.4.1 Errors in the Homographic matrix
- 4.4.2 Errors in the translation vector
- 4.4.3 Errors in the rotation matrix
- 4.5 Experiments Study
- 4.5.1 Computer Simulation
- 4.5.2 Real Data Experiment
- 4.6 Summary
- Chapter 5 3D Reconstruction with Image-to-World Transformation
- 5.1 Introduction
- 5.2 Image-to-World Transformation matrix
- 5.3 Two-Known-Plane based method
- 5.3.1 Static Calibration
- 5.3.2 Determining the on-line Homography
- 5.3.3 Euclidean 3D Reconstruction
- 5.3.4 Configuration of the two scene planes
- 5.3.5 Computational Complexity Study
- 5.3.6 Reconstruction Examples
- 5.4 One-Known-Plane based method
- 5.4.1 Calibration Tasks
- 5.4.2 Generic Homography
- 5.4.3 Dynamic Calibration
- 5.4.4 Reconstruction Procedure
- 5.4.5. Reconstruction Examples
- 5.5 Summary
- Chapter 6 Catadioptric Vision System
- 6.1 Introduction
- 6.1.1 Wide Field-of-View System
- 6.1.2 Calibration of Omni-directional Vision System
- 6.1.3 Test Example
- 6.2 Panoramic Stereoscopic System
- 6.2.1 System Configuration
- 6.2.2 Co-axis Installation
- 6.2.3 System Model
- 6.2.4 Epipolar geometry and 3D reconstruction
- 6.2.5 Calibration Procedure
- 6.2.5.1 Initialization of the Parameters
- 6.2.5.2 Non-linear optimization
- 6.3 Parabolic Camera System
- 6.3.1 System Configuration
- 6.3.2 System Modeling
- 6.3.3 Calibration with Lifted-Fundamental-matrix
- 6.3.3.1 The lifted fundamental matrix
- 6.3.3.2 Calibration Procedure
- 6.3.3.3 Simplified Case
- 6.3.3.4 Discussion
- 6.3.4 Calibration Based on Homographic matrix
- 6.3.4.1 Plane-to-mirror Homography
- 6.3.4.2 Calibration Procedure
- 6.3.4.3 Calibration Test
- 6.3.5 Polynomial Eigenvalue Problem
- 6.3.5.1 Mirror-to-mirror Homography
- 6.3.5.2 Constraints and Solutions
- 6.3.5.3 Test Example
- 6.4 Hyperbolic Camera System
- 6.4.1 System Structure
- 6.4.2 Imaging Process and Back Projection
- 6.4.3 Polynomial Eigenvalue Problem
- 6.5 Summary
- Chapter 7 Conclusions and Future Expectation
- 7.1 Conclusions
- 7.2 Future Expectations
- References.