Chargement en cours…

MLOps workflow with Github Actions /

Get started with MLOps and Github Actions to package a container with an ONNX model that does live inferencing with a Flask application. By using Azure ML, learn how to download the large ONNX model into the Github Action workflow, package it as a container and then push it to a container registry....

Description complète

Détails bibliographiques
Auteurs principaux: Deza, Alfredo (Auteur, VerfasserIn.), Gift, Noah (Auteur, VerfasserIn.)
Collectivité auteur: Safari, an O'Reilly Media Company (Collaborateur, MitwirkendeR.)
Format: Vidéo
Langue:Inglés
Publié: [Erscheinungsort nicht ermittelbar] : Pragmatic AI Solutions, 2021
Édition:1st edition.
Accès en ligne:Texto completo (Requiere registro previo con correo institucional)
Description
Résumé:Get started with MLOps and Github Actions to package a container with an ONNX model that does live inferencing with a Flask application. By using Azure ML, learn how to download the large ONNX model into the Github Action workflow, package it as a container and then push it to a container registry. For reference use the https://github.com/alfredodeza/flask-roberta repository Topics include: * Create a container that does live inferencing with Flask and the ONNX runtime * Package the model and verify it works locally * Setup a Github Action to authenticate to Azure ML and download a previously registered model * Build the new container as a Github Action, authenticate to Docker Hub or Github Packages * Push the new container to the Github registry or any other registry like Docker Hub.
Description:Online resource; Title from title screen (viewed March 5, 2021).
Description matérielle:1 online resource (1 video file, circa 1 hr., 6 min.)