Cargando…

Big data imperatives : enterprise big data warehouse, BI implementations and analytics /

Big Data Imperatives, focuses on resolving the key questions on everyones mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mohanty, Soumendra (Autor), Jagadeesh, Madhu (Autor), Srivatsa, Harsha (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, California] : Apress, [2013]
Colección:The expert's voice in big data
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn858626272
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130919s2013 caua ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDXCP  |d OCLCO  |d B24X7  |d COO  |d UMI  |d DEBSZ  |d CDX  |d GGVRL  |d NUI  |d S9I  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d VT2  |d Z5A  |d LIV  |d MERUC  |d ESU  |d IDB  |d OCLCQ  |d IOG  |d N$T  |d REB  |d VLB  |d CEF  |d U3W  |d OCLCQ  |d WYU  |d DEHBZ  |d YOU  |d TKN  |d OCLCQ  |d UAB  |d UKAHL  |d OCLCQ  |d AU@  |d LEAUB  |d DCT  |d ERF  |d OCLCQ  |d BRF  |d OCLCO  |d OCLCQ 
019 |a 857849963  |a 859588857  |a 861352394  |a 902409746  |a 1026457006  |a 1058488553  |a 1066009252  |a 1066469786  |a 1071937998  |a 1086472440  |a 1110989864  |a 1112523208  |a 1126444506 
020 |a 9781430248736  |q (electronic bk.) 
020 |a 1430248734  |q (electronic bk.) 
020 |z 9781430248729 
020 |z 1430248726 
024 7 |a 10.1007/978-1-4302-4873-6  |2 doi 
029 1 |a AU@  |b 000052162106 
029 1 |a AU@  |b 000052281207 
029 1 |a AU@  |b 000053295368 
029 1 |a AU@  |b 000060583772 
029 1 |a CHNEW  |b 000900069 
029 1 |a DEBBG  |b BV041433085 
029 1 |a DEBSZ  |b 398290474 
029 1 |a DEBSZ  |b 427418585 
029 1 |a NZ1  |b 15293495 
029 1 |a AU@  |b 000051792601 
035 |a (OCoLC)858626272  |z (OCoLC)857849963  |z (OCoLC)859588857  |z (OCoLC)861352394  |z (OCoLC)902409746  |z (OCoLC)1026457006  |z (OCoLC)1058488553  |z (OCoLC)1066009252  |z (OCoLC)1066469786  |z (OCoLC)1071937998  |z (OCoLC)1086472440  |z (OCoLC)1110989864  |z (OCoLC)1112523208  |z (OCoLC)1126444506 
037 |a CL0500000321  |b Safari Books Online 
050 4 |a QA76.9.D32  |b M64 2013eb 
072 7 |a COM018000  |2 bisacsh 
072 7 |a POL017000  |2 bisacsh 
072 7 |a COM  |x 021030  |2 bisacsh 
072 7 |a COM  |x 021040  |2 bisacsh 
072 7 |a JPP  |2 bicssc 
072 7 |a UB  |2 bicssc 
082 0 4 |a 005.74  |2 23 
049 |a UAMI 
100 1 |a Mohanty, Soumendra,  |e author. 
245 1 0 |a Big data imperatives :  |b enterprise big data warehouse, BI implementations and analytics /  |c Soumendra Mohanty, Madhu Jagadeesh, Harsha Srivatsa. 
264 1 |a [Berkeley, California] :  |b Apress,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xxii, 296 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a The expert's voice in big data 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 29, 2017). 
505 0 |a "Big Data" in the enterprise -- The new information management paradigm -- Big data implications for industry -- Emerging database landscape -- Application architectures for big data and analytics solutions -- Big data analytics methodology -- Extracting value from big data: in-memory solutions, real time analytics, and recommendation systems -- Data scientist. 
520 |a Big Data Imperatives, focuses on resolving the key questions on everyones mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperativesexplains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big Data Imperativesdescribes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology, technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Big data. 
650 0 |a Business intelligence. 
650 0 |a Information technology. 
650 0 |a Electronic data processing. 
650 0 |a Data mining. 
650 0 |a Strategic planning. 
650 2 |a Data Mining 
650 6 |a Données volumineuses. 
650 6 |a Technologie de l'information. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Planification stratégique. 
650 7 |a information technology.  |2 aat 
650 7 |a COMPUTERS  |x Databases  |x Data Mining.  |2 bisacsh 
650 7 |a COMPUTERS  |x Databases  |x Data Warehousing.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Business intelligence.  |2 fast  |0 (OCoLC)fst00842723 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Electronic data processing.  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Information technology.  |2 fast  |0 (OCoLC)fst00973089 
650 7 |a Strategic planning.  |2 fast  |0 (OCoLC)fst01134371 
655 0 |a Electronic books. 
700 1 |a Jagadeesh, Madhu,  |e author. 
700 1 |a Srivatsa, Harsha,  |e author. 
776 0 |z 1430248726 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781430248729/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL29081084 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29395557 
938 |a Books 24x7  |b B247  |n bks00056093 
938 |a Coutts Information Services  |b COUT  |n 26870362 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1636302 
938 |a EBSCOhost  |b EBSC  |n 1173593 
938 |a Cengage Learning  |b GVRL  |n GVRL6UWD 
938 |a YBP Library Services  |b YANK  |n 11118614 
994 |a 92  |b IZTAP