Linear and projective representations of symmetric groups /
The representation theory of symmetric groups is one of the most beautiful, popular, and important parts of algebra with many deep relations to other areas of mathematics, such as combinatorics, Lie theory, and algebraic geometry. Kleshchev describes a new approach to the subject, based on the recen...
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Cambridge :
Cambridge University Press,
2005.
|
Series: | Cambridge tracts in mathematics ;
163. |
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- 1. Notation and generalities
- 2. Symmetric groups I
- 3. Degenerate affine Hecke algebra
- 4. First results on H[subscript n]-modules
- 5. Crystal operators
- 6. Character calculations
- 7. Integral representations and cyclotomic Hecke algebras
- 8. Functors e[subscript i][superscript [lambda]] and f[subscript i][superscript [lambda]]
- 9. Construction of U[subscript z][superscript +] and irreducible modules
- 10. Identification of the crystal
- 11. Symmetric groups II
- 12. Generalities on superalgebra
- 13. Sergeev superalgebras
- 14. Affine Sergeev superalgebras
- 15. Integral representations and cyclotomic Sergeev algebras
- 16. First results on X[subscript n]-modules
- 17. Crystal operators for X[subscript n]
- 18. Character calculations for X[subscript n]
- 19. Operators e[subscript i][superscript [lambda]] and f[subscript i][superscript [lambda]]
- 20. Construction of U[subscript z][superscript +] and irreducible modules
- 21. Identification of the crystal
- 22. Double covers.