Loading…

Regularization, optimization, kernels, and support vector machines /

"Obtaining reliable models from given data is becoming increasingly important in a wide range of different applications fields including the prediction of energy consumption, complex networks, environmental modelling, biomedicine, bioinformatics, finance, process modelling, image and signal pro...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Corporate Author: ROKS (Workshop) Leuven, Belgium)
Other Authors: Suykens, Johan A. K. (Editor), Signoretto, Marco (Editor), Argyriou, Andreas (Editor)
Format: Electronic Conference Proceeding eBook
Language:Inglés
Published: Boca Raton : CRC Press, [2015]
Series:Chapman & Hall/CRC machine learning & pattern recognition series.
Subjects:
Online Access:Texto completo
Table of Contents:
  • 1. An equivalence between the lasso and support vector machines / Martin Jaggi
  • 2. Regularized dictionary learning / Annalisa Barla, Saverio Salzo, and Alessandro Verri
  • 3. Hybrid conditional gradient-smoothing algorithms with applications to sparse and low rank regularization / Andreas Argyriou, Marco Signoretto, and Johan A.K. Suykens
  • 4. Nonconvex proximal splitting with computational errors / Suvrit Sra
  • 5. Learning constrained task similarities in graph-regularized multi-task learning / Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso
  • 6. The graph-guided group lasso for genome-wide association studies / Zi Wang and Giovanni Montana
  • 7. On the convergence rate of stochastic gradient descent for strongly convex functions / Cheng Tang and Claire Monteleoni
  • 8. Detecting ineffective features for nonparametric regression / Kris De Brabanter, Paola Gloria Ferrario, and László Györfi
  • 9. Quadratic basis pursuit / Henrik Ohlsson, Allen Y. Yang, Roy Dong, Michel Verhaegen, and S. Shankar Sastry
  • 10. Robust compressive sensing / Esa Ollila, Hyon-Jung Kim, and Visa Koivunen
  • 11. Regularized robust portfolio estimation / Theodoros Evgeniou, Massimiliano Pontil, Diomidis Spinellis, and Nick Nassuphis
  • 12. The why and how of nonnegative matrix factorization / Nicolas Gillis
  • 13. Rank constrained optimization problems in computer vision / Ivan Markovsky
  • 14. Low-rank tensor denoising and recovery via convex optimization / Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima
  • 15. Learning sets and subspaces / Alessandro Rudi, Guillermo D. Canas, Ernesto De Vito, and Lorenzo Rosasco
  • 16. Output kernel learning methods / Francesco Dinuzzo, Cheng Soon Ong, and Kenji Fukumizu
  • 17. Kernel based identification of systems with multiple outputs using nuclear norm regularization / Tillmann Falck, Bart De Moor, and Johan A.K. Suykens
  • 18. Kernel methods for image denoising / Pantelis Bouboulis and Sergios Theodoridis
  • 19. Single-source domain adaptation with target and conditional shift / Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang, Zhi-Hua Zhou, and Claudio Persello
  • 20. Multi-layer support vector machines / Marco A. Wiering and Lambert R.B. Schomaker
  • 21. Online regression with kernels / Steven Van Vaerenbergh and Ignacio Santamaría.