|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn815974952 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
121005s2012 enk ob 001 0 eng d |
040 |
|
|
|a MERUC
|b eng
|e pn
|c MERUC
|d OCLCO
|d IDEBK
|d EBLCP
|d OCLCQ
|d AUW
|d OCLCO
|d YDXCP
|d OCLCQ
|d OCLCO
|d OCLCF
|d DEBSZ
|d N$T
|d TXA
|d UIU
|d CAMBR
|d OCLCQ
|d VGM
|d OCLCQ
|d UAB
|d OCLCQ
|d CEF
|d STF
|d MERUC
|d LOA
|d ZCU
|d ICG
|d OCLCQ
|d TKN
|d DKC
|d AU@
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|
019 |
|
|
|a 812174089
|a 817918007
|
020 |
|
|
|a 9781139571258
|
020 |
|
|
|a 1139571257
|
020 |
|
|
|a 9781139104166
|q (electronic bk.)
|
020 |
|
|
|a 1139104160
|q (electronic bk.)
|
020 |
|
|
|a 9781139569446
|q (electronic bk.)
|
020 |
|
|
|a 1139569449
|q (electronic bk.)
|
020 |
|
|
|z 9781107606654
|
020 |
|
|
|z 1107606659
|
029 |
1 |
|
|a DEBSZ
|b 431223653
|
029 |
1 |
|
|a NLGGC
|b 351924469
|
035 |
|
|
|a (OCoLC)815974952
|z (OCoLC)812174089
|z (OCoLC)817918007
|
050 |
|
4 |
|a TA353 .S55 2012
|
072 |
|
7 |
|a TEC
|x 021000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/05
|a 620.105
|
084 |
|
|
|a SCI085000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Sofonea, Mircea.
|
245 |
1 |
0 |
|a Mathematical Models in Contact Mechanics.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (296 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Series; Title; Copyright; Dedication; Contents; Preface; Part I Introduction to variational inequalities; 1 Preliminaries on functional analysis; 1.1 Normed spaces; 1.1.1 Basic definitions; 1.1.2 Linear continuous operators; 1.1.3 Fixed point theorems; 1.2 Hilbert spaces; 1.2.1 Projection operators; 1.2.2 Orthogonality; 1.2.3 Duality and weak convergence; 1.3 Elements of nonlinear analysis; 1.3.1 Monotone operators; 1.3.2 Convex lower semicontinuous functions; 1.3.3 Minimization problems; 2 Elliptic variational inequalities; 2.1 Variational inequalities of the first kind.
|
505 |
8 |
|
|a 2.1.1 Existence and uniqueness2.1.2 Penalization; 2.2 Variational inequalities of the second kind; 2.2.1 Existence and uniqueness; 2.2.2 A convergence result; 2.2.3 Regularization; 2.3 Quasivariational inequalities; 2.3.1 The Banach fixed point argument; 2.3.2 The Schauder fixed point argument; 2.3.3 A convergence result; 3 History-dependent variational inequalities; 3.1 Nonlinear equations with history-dependent operators; 3.1.1 Spaces of vector-valued functions; 3.1.2 Two examples; 3.1.3 The general case; 3.2 History-dependent quasivariational inequalities.
|
505 |
8 |
|
|a 3.2.1 A basic existence and uniqueness result3.2.2 A convergence result; 3.3 Evolutionary variational inequalities; 3.3.1 Existence and uniqueness; 3.3.2 Convergence results; Part II Modelling and analysis of contact problems; 4 Modelling of contact problems; 4.1 Function spaces in contact mechanics; 4.1.1 Preliminaries; 4.1.2 Spaces for the displacement field; 4.1.3 Spaces for the stress field; 4.1.4 Spaces for piezoelectric contact problems; 4.2 Physical setting and constitutive laws; 4.2.1 Physical setting; 4.2.2 Elastic constitutive laws; 4.2.3 Viscoelastic constitutive laws.
|
505 |
8 |
|
|a 4.2.4 Viscoplastic constitutive laws4.2.5 The von Mises convex; 4.3 Modelling of elastic contact problems; 4.3.1 Preliminaries; 4.3.2 Contact conditions; 4.3.3 Friction laws; Conclusion; 4.4 Modelling of elastic-viscoplastic contact problems; 4.4.1 Preliminaries; 4.4.2 Contact conditions and friction laws; Conclusion; 4.5 Modelling of piezoelectric contact problems; 4.5.1 Physical setting and preliminaries; 4.5.2 Constitutive laws; 4.5.3 Contact conditions; Conclusion; 5 Analysis of elastic contact problems; 5.1 The Signorini contact problem; 5.1.1 Problem statement.
|
505 |
8 |
|
|a 5.1.2 Existence and uniqueness5.1.3 Penalization; 5.1.4 Dual variational formulation; 5.1.5 Minimization; 5.1.6 One-dimensional example; 5.2 Frictional contact problems; 5.2.1 Statement of the problems; 5.2.2 Existence and uniqueness; 5.2.3 A convergence result; 5.2.4 Regularization; 5.2.5 Dual variational formulation; 5.2.6 Minimization; 5.3 A frictional contact problem with normal compliance; 5.3.1 Problem statement; 5.3.2 The Banach fixed point argument; 5.3.3 The Schauder fixed point argument; 5.3.4 Convergence results; 6 Analysis of elastic-viscoplastic contact problems.
|
500 |
|
|
|a 6.1 Bilateral frictionless contact problems.
|
520 |
|
|
|a A complete introduction to the modelling and mathematical analysis of contact processes with deformable solids.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Contact mechanics
|x Mathematical models.
|
650 |
|
6 |
|a Mécanique du contact
|x Modèles mathématiques.
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x Dynamics
|x Fluid Dynamics.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Material Science.
|2 bisacsh
|
650 |
|
7 |
|a Mecánica
|x Modelos matemáticos
|2 embne
|
650 |
|
7 |
|a Contact mechanics
|x Mathematical models
|2 fast
|
700 |
1 |
|
|a Matei, Andaluzia.
|
776 |
0 |
8 |
|i Print version:
|a Sofonea, Mircea.
|t Mathematical Models in Contact Mechanics.
|d Cambridge : Cambridge University Press, ©2012
|z 9781107606654
|
830 |
|
0 |
|a London Mathematical Society lecture note series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1025075
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24159396
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1025075
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 480342
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 395126
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9808551
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9783809
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9809909
|
994 |
|
|
|a 92
|b IZTAP
|