Statistical Inference for Discrete Time Stochastic Processes
This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on marti...
Cote: | Libro Electrónico |
---|---|
Auteur principal: | |
Collectivité auteur: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
New Delhi :
Springer India : Imprint: Springer,
2013.
|
Édition: | 1st ed. 2013. |
Collection: | SpringerBriefs in Statistics,
|
Sujets: | |
Accès en ligne: | Texto Completo |
Table des matières:
- CAN Estimators from dependent observations
- Markov chains and their extensions
- Non-Gaussian ARMA models
- Estimating Functions
- Estimation of joint densities and conditional expectation
- Bootstrap and other resampling procedures
- Index.