Chargement en cours…

Statistical Inference for Discrete Time Stochastic Processes

This work is an overview of statistical inference in stationary, discrete time stochastic processes.  Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on marti...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Rajarshi, M. B. (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:Inglés
Publié: New Delhi : Springer India : Imprint: Springer, 2013.
Édition:1st ed. 2013.
Collection:SpringerBriefs in Statistics,
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • CAN Estimators from dependent observations
  • Markov chains and their extensions
  • Non-Gaussian ARMA models
  • Estimating Functions
  • Estimation of joint densities and conditional expectation
  • Bootstrap and other resampling procedures
  • Index.