Chargement en cours…

Noncommutative Geometry and Number Theory Where Arithmetic meets Geometry and Physics /

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Collectivité auteur: SpringerLink (Online service)
Autres auteurs: Consani, Caterina (Éditeur intellectuel), Marcolli, Matilde (Éditeur intellectuel)
Format: Électronique eBook
Langue:Inglés
Publié: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2006.
Édition:1st ed. 2006.
Collection:Aspects of Mathematics
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • The Hecke algebra of a reductive p-adic group: a geometric conjecture
  • Hilbert modular forms and the Ramanujan conjecture
  • Farey fractions and two-dimensional tori
  • Transgressions of the Godbillon-Vey Class and Rademacher functions
  • Archimedean cohomology revisited
  • A twisted Burnside theorem for countable groups and Reidemeister numbers
  • to Hopf-Cyclic Cohomology
  • The non-abelian (or non-linear) method of Chabauty
  • The residues of quantum field theory - numbers we should know
  • Phase transitions with spontaneous symmetry breaking on Hecke C*-algebras from number fields
  • On harmonic maps in noncommutative geometry
  • Towards the fractional quantum Hall effect: a noncommutative geometry perspective
  • Homological algebra for Schwartz algebras of reductive p-adic groups
  • A non-commutative geometry approach to the representation theory of reductive p-adic groups: Homology of Hecke algebras, a survey and some new results
  • Three examples of non-commutative boundaries of Shimura varieties
  • Holomorphic bundles on 2-dimensional noncommutative toric orbifolds
  • A New short proof of the local index formula of Atiyah-Singer.