Chargement en cours…

Multi-objective Swarm Intelligence Theoretical Advances and Applications /

The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is present...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Collectivité auteur: SpringerLink (Online service)
Autres auteurs: Dehuri, Satchidananda (Éditeur intellectuel), Jagadev, Alok Kumar (Éditeur intellectuel), Panda, Mrutyunjaya (Éditeur intellectuel)
Format: Électronique eBook
Langue:Inglés
Publié: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Édition:1st ed. 2015.
Collection:Studies in Computational Intelligence, 592
Sujets:
Accès en ligne:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-46309-3
003 DE-He213
005 20221108100432.0
007 cr nn 008mamaa
008 150310s2015 gw | s |||| 0|eng d
020 |a 9783662463093  |9 978-3-662-46309-3 
024 7 |a 10.1007/978-3-662-46309-3  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Multi-objective Swarm Intelligence  |h [electronic resource] :  |b Theoretical Advances and Applications /  |c edited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 201 p. 60 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 592 
505 0 |a Introduction -- Behavior of Bacterial Colony -- E.coli Bacterial Colonies -- Optimization based on E.coli Bacterial Colony -- Classification of BFO Algorithm -- Multi-objective optimization based on BF -- An overview of BFO Applications -- Conclusion. 
520 |a The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.       . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Dehuri, Satchidananda.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jagadev, Alok Kumar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Panda, Mrutyunjaya.  |e editor.  |0 (orcid)0000-0001-5713-9220  |1 https://orcid.org/0000-0001-5713-9220  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662463109 
776 0 8 |i Printed edition:  |z 9783662463086 
776 0 8 |i Printed edition:  |z 9783662523650 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 592 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-662-46309-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)