Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction
This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic...
| Cote: | Libro Electrónico |
|---|---|
| Auteur principal: | |
| Collectivité auteur: | |
| Format: | Électronique eBook |
| Langue: | Inglés |
| Publié: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2010.
|
| Édition: | 1st ed. 2010. |
| Collection: | Lecture Notes in Mathematics,
1992 |
| Sujets: | |
| Accès en ligne: | Texto Completo |
Table des matières:
- The Harmonic Oscillator
- The Weyl-Hörmander Calculus
- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 1
- The Heat-Semigroup, Functional Calculus and Kernels
- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 2
- The Spectral Zeta Function
- Some Properties of the Eigenvalues of
- Some Tools from the Semiclassical Calculus
- On Operators Induced by General Finite-Rank Orthogonal Projections
- Energy-Levels, Dynamics, and the Maslov Index
- Localization and Multiplicity of a Self-Adjoint Elliptic 2×2 Positive NCHO in .


