Chargement en cours…

Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction

This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Parmeggiani, Alberto (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:Inglés
Publié: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Édition:1st ed. 2010.
Collection:Lecture Notes in Mathematics, 1992
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • The Harmonic Oscillator
  • The Weyl-Hörmander Calculus
  • The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 1
  • The Heat-Semigroup, Functional Calculus and Kernels
  • The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 2
  • The Spectral Zeta Function
  • Some Properties of the Eigenvalues of
  • Some Tools from the Semiclassical Calculus
  • On Operators Induced by General Finite-Rank Orthogonal Projections
  • Energy-Levels, Dynamics, and the Maslov Index
  • Localization and Multiplicity of a Self-Adjoint Elliptic 2×2 Positive NCHO in .