Evolutionary Multi-objective Optimization in Uncertain Environments Issues and Algorithms /
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algo...
Cote: | Libro Electrónico |
---|---|
Auteurs principaux: | , |
Collectivité auteur: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2009.
|
Édition: | 1st ed. 2009. |
Collection: | Studies in Computational Intelligence,
186 |
Sujets: | |
Accès en ligne: | Texto Completo |
Table des matières:
- I: Evolving Solution Sets in the Presence of Noise
- Noisy Evolutionary Multi-objective Optimization
- Handling Noise in Evolutionary Multi-objective Optimization
- Handling Noise in Evolutionary Neural Network Design
- II: Tracking Dynamic Multi-objective Landscapes
- Dynamic Evolutionary Multi-objective Optimization
- A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization
- III: Evolving Robust Solution Sets
- Robust Evolutionary Multi-objective Optimization
- Evolving Robust Solutions in Multi-Objective Optimization
- Evolving Robust Routes
- Final Thoughts.