Chargement en cours…

Introduction to Singularities and Deformations

Singularity theory is a field of intensive study in modern mathematics with fascinating relations to algebraic geometry, complex analysis, commutative algebra, representation theory, theory of Lie groups, topology, dynamical systems, and many more, and with numerous applications in the natural and t...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteurs principaux: Greuel, Gert-Martin (Auteur), Lossen, Christoph (Auteur), Shustin, Eugenii I. (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:Inglés
Publié: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Édition:1st ed. 2007.
Collection:Springer Monographs in Mathematics,
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • I. Singularity Theory. Basic Properties of Complex Spaces and Germs. Weierstrass Preparation and Finiteness Theorem. Application to Analytic Algebras. Complex Spaces. Complex Space Germs and Singularities. Finite Morphisms and Finite Coherence Theorem. Applications of the Finite Coherence Theorem. Finite Morphisms and Flatness. Flat Morphisms and Fibres. Singular Locus and Differential Forms. Hypersurface Singularities. Invariants of Hypersurface Singularities. Finite Determinacy. Algebraic Group Actions. Classification of Simple Singularities. Plane Curve Singularities. Parametrization. Intersection Multiplicity. Resolution of Plane Curve Singularities. Classical Topological and Analytic Invariants
  • II. Local Deformation Theory. Deformations of Complex Space Germs. Deformations of Singularities. Embedded Deformations. Versal Deformations. Infinitesimal Deformations. Obstructions. Equisingular Deformations of Plane Curve Singularities
  • Equisingular Deformations of the Equation. The Equisingularity Ideal. Deformations of the Parametrization. Computation of T^1 and T^2 . Equisingular Deformations of the Parametrization. Equinormalizable Deformations. Versal Equisingular Deformations
  • Appendices: Sheaves. Commutative Algebra. Formal Deformation Theory. Literature
  • Index.