Lasso-MPC - Predictive Control with ℓ1-Regularised Least Squares
This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an ℓ1-regularised least squares loss function, in which the control error variance competes with the sum of input channels ma...
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Corporate Author: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edition: | 1st ed. 2016. |
Series: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
Subjects: | |
Online Access: | Texto Completo |
Table of Contents:
- Introduction
- Background
- Principles of LASSO MPC
- Version 1: `1-Input Regularised Quadratic MPC.- Version 2: LASSO MPC with stabilising terminal cost
- Design of LASSO MPC for prioritised and auxiliary actuators
- Robust Tracking with Soft-constraints
- Ship roll reduction with rudder and fins
- Concluding Remarks.