Cargando…

Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lapidus, Michel L. (Autor), van Frankenhuijsen, Machiel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:2nd ed. 2013.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-2176-4
003 DE-He213
005 20220625012838.0
007 cr nn 008mamaa
008 120920s2013 xxu| s |||| 0|eng d
020 |a 9781461421764  |9 978-1-4614-2176-4 
024 7 |a 10.1007/978-1-4614-2176-4  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Lapidus, Michel L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fractal Geometry, Complex Dimensions and Zeta Functions  |h [electronic resource] :  |b Geometry and Spectra of Fractal Strings /  |c by Michel L. Lapidus, Machiel van Frankenhuijsen. 
250 |a 2nd ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XXVI, 570 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Preface -- Overview -- Introduction -- 1. Complex Dimensions of Ordinary Fractal Strings -- 2. Complex Dimensions of Self-Similar Fractal Strings -- 3. Complex Dimensions of Nonlattice Self-Similar Strings -- 4. Generalized Fractal Strings Viewed as Measures -- 5. Explicit Formulas for Generalized Fractal Strings -- 6. The Geometry and the Spectrum of Fractal Strings -- 7. Periodic Orbits of Self-Similar Flows -- 8. Fractal Tube Formulas -- 9. Riemann Hypothesis and Inverse Spectral Problems -- 10. Generalized Cantor Strings and their Oscillations -- 11. Critical Zero of Zeta Functions -- 12 Fractality and Complex Dimensions -- 13. Recent Results and Perspectives -- Appendix A. Zeta Functions in Number Theory -- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics -- Appendix C. An Application of Nevanlinna Theory -- Bibliography -- Author Index -- Subject Index -- Index of Symbols -- Conventions -- Acknowledgements. 
520 |a Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, complex analysis, distribution theory, and mathematical physics. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Key Features include: · The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings · Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra · Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal · Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula · The method of Diophantine approximation is used to study self-similar strings and flows · Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: "The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." --Nicolae-Adrian Secelean, Zentralblatt. 
650 0 |a Number theory. 
650 0 |a Measure theory. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Functional analysis. 
650 1 4 |a Number Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Functional Analysis. 
700 1 |a van Frankenhuijsen, Machiel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461421757 
776 0 8 |i Printed edition:  |z 9781461421771 
776 0 8 |i Printed edition:  |z 9781489988386 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-2176-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)