Support Vector Machines
This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify thre...
Cote: | Libro Electrónico |
---|---|
Auteurs principaux: | , |
Collectivité auteur: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
New York, NY :
Springer New York : Imprint: Springer,
2008.
|
Édition: | 1st ed. 2008. |
Collection: | Information Science and Statistics,
|
Sujets: | |
Accès en ligne: | Texto Completo |
Table des matières:
- Loss Functions and Their Risks
- Surrogate Loss Functions (*)
- Kernels and Reproducing Kernel Hilbert Spaces
- Infinite-Sample Versions of Support VectorMachines
- Basic Statistical Analysis of SVMs
- Advanced Statistical Analysis of SVMs (*)
- Support Vector Machines for Classification
- Support Vector Machines for Regression.
- Robustness
- Computational Aspects
- Data Mining.