Anisotropic Particle Assemblies : Synthesis, Assembly, Modeling, and Applications /
"Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assem...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2018]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications; Copyright; Contents; Contributors; Chapter 1: Recent advances in the synthesis of anisotropic particles; 1.1. Introduction; 1.2. Anisotropic Organic Particles; 1.3. Anisotropic Polymeric Particles; 1.3.1. Controlled Deformation; 1.3.2. Swelling and Phase Separation; 1.3.3. Geometrical Confinement; 1.3.4. Self-Assembly of Block Co- and Terpolymers; 1.3.5. Replication; 1.3.6. Lithography Techniques; 1.3.7. Fluidic Processes; 1.4. Anisotropic Hybrid Particles.
- 1.4.1. Hybrid Polymeric/Inorganic Particles1.4.1.1. Electrostatic interactions; 1.4.1.2. Fluidic processes; 1.4.1.3. Seeded polymerization; 1.4.1.4. Geometrical confinement; 1.4.2. Hybrid Dielectric/Metal Particles; 1.4.2.1. Epitaxial growth; 1.4.2.2. Surface modification; 1.4.2.3. Masking and templating; 1.4.2.4. Precipitation polymerization; 1.4.3. Hybrid Metal-Semiconductor Particles; 1.4.3.1. Heterogeneous nucleation; 1.4.3.2. Simultaneous growth of both components in the absence of preformed seeds; 1.4.4. Hybrid Metal-Metal Particles; 1.4.4.1. Clustering assisted by van der Waals forces.
- 1.4.4.2. Heterogeneous nucleation via epitaxial growth1.4.4.3. Heterogeneous nucleation via nonepitaxial growth; 1.4.4.4. Galvanic displacement; 1.4.4.5. Growth in a template; 1.5. Conclusions; References; Chapter 2: Shape control in the synthesis of colloidal semiconductor nanocrystals; 2.1. Introduction; 2.2. II-VI NCS; 2.3. VI-IV NCS; 2.4. III-V NCS; 2.5. Halide Perovskite NCS; 2.6. Concluding Remarks; References; Chapter 3: On the mechanistic studies of the growth of anisotropic particles (theory and simulation); 3.1. Introduction; 3.2. Anisotropic Crystals Precipitation: Principles.
- 3.2.1. Crystal Growth Driving Force3.2.2. Particle Morphology: Thermodynamic vs. Kinetic Control; 3.2.2.1. Equilibrium morphology; 3.2.2.2. Growth morphology; 3.2.2.3. Computing particle morphology; 3.3. Defining, Representing, and Computing Particle Morphologies; 3.3.1. A Mathematical Definition of Particle Morphology; 3.3.2. Representing the Morphology Space; 3.3.2.1. Morphology graph; 3.3.2.2. Morphology domain; 3.3.2.3. Shape diagram; 3.4. Growth Mechanisms and Mechanistic Models; 3.4.1. Kink Sites: Hot Spots for Growth; 3.4.2. Diffusion Limited Growth.
- 3.4.2.1. Growth rate in the rough regime3.4.3. Layered Growth; 3.4.3.1. Rate of step propagation; 3.4.4. Surface Nucleation; 3.4.4.1. Growth rate dominated by surface nucleation; 3.4.5. Spiral Growth; 3.4.5.1. Growth rate in the spiral mechanism; 3.4.6. Growth Regimes vs. Driving Force; 3.5. Molecular Models; 3.5.1. Particle Morphology From Static Molecular Information; 3.5.1.1. Particle morphology from molecular structure; 3.5.1.2. Particle morphologies from attachment energy; 3.5.2. Molecular Dynamics Simulations of Crystal Growth; 3.5.2.1. Molecular dynamics simulation setup.