Cargando…

Magnetic, ferroelectric, and multiferroic metal oxides /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Stojanovi�c, Biljana D. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2018]
Colección:Metal oxides series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Magnetic, Ferroelectric, and Multiferroic Metal Oxides
  • Copyright Page
  • Contents
  • List of contributors
  • About the series editor
  • About the editor
  • Preface to the series
  • Preface
  • Introduction to ferroics and multiferroics: Essential background
  • References
  • I. Ferroelectric Metal Oxides
  • I. Ferroelectrics: Fundamentals
  • 1 General view of ferroelectrics: Origin of ferroelectricity in metal oxide ferroelectrics and ferroelectric properties
  • 1.1 Introduction
  • 1.2 Macroscopic phenomenological theory of ferroelectric phase transitions
  • 1.3 Microscopic theory of ferroelectrics: the mean field
  • 1.4 Dynamic properties of ferroelectrics: theory
  • 1.5 Raman, infrared, and dielectric spectroscopy of ferroelectrics
  • 1.6 Other spectroscopic techniques
  • 1.7 The size and mechanical strain effect in ferroelectric ceramics and thin films
  • 1.8 Summary
  • References
  • 2 Perovskite and Aurivillius: Types of ferroelectric metal oxides
  • 2.1 Introduction
  • 2.2 Perovskite structure
  • 2.2.1 Substitutions in the barium titanate lattice
  • 2.3 Aurivillius type of ferroelectric metal oxides
  • 2.3.1 Crystal structure of the Aurivillius type of compounds
  • 2.3.2 Substitution in Aurivillius type of structure
  • 2.4 Summary
  • References
  • 3 Lead-free perovskite ferroelectrics
  • 3.1 Introduction
  • 3.2 Alkaline niobates
  • 3.3 Alkaline bismuth titanates
  • 3.4 Barium titanate-based piezoelectrics
  • 3.5 Conclusions
  • Acknowledgments
  • References
  • 4 Perovskite layer-structured ferroelectrics
  • 4.1 General overview
  • 4.2 Physical properties
  • 4.2.1 Single and bilayer bismuth layer-structured ferroelectrics
  • 4.2.2 Multilayer bismuth layer-structured ferroelectrics (m�a�#x9C;{605}3)
  • 4.2.2.1 m=3
  • 4.2.2.2 m=4
  • 4.2.2.3 m�a�#x9C;{605}5
  • Acknowledgements
  • References
  • II. Ferroelectric Metal Oxides: Synthesis and Deposition.
  • 8.2.3 BaTiO3 thin films: Preparation techniques, the influence of intrinsic and extrinsic contributions on the functional p ...
  • 8.2.4 BaTiO3 one-dimensional nanostructures: Preparation and properties
  • 8.3 Recent approach to nanosized BaTiO3-based systems
  • 8.3.1 Introduction
  • 8.3.2 Undoped and doped BaTiO3 nanopowders prepared by wet-chemical methods
  • 8.3.3 Undoped and doped nanostructured BaTiO3 ceramics consolidated by spark plasma sintering
  • 8.3.4 Undoped and homovalently doped multilayer BaTiO3 thin films
  • 8.3.4.1 Multilayer BaTiO3 thin films prepared by RF-magnetron sputtering
  • 8.3.4.2 Multilayer Ba(Ti, Zr)O3 thin films prepared by the sol-gel method
  • 8.3.5 Donor-doped BaTiO3 one-dimensional nanostructures prepared by template-mediated colloidal chemistry
  • 8.4 Conclusions and trends
  • Acknowledgements
  • References
  • 9 Ecological, lead-free ferroelectrics
  • 9.1 Lead-free ferroelectrics
  • 9.2 Preparation of lead-free piezoelectric ceramics with perovskite structure
  • 9.3 Properties of lead-free piezoelectric ceramics
  • 9.3.1 Aurivillius-type structure ceramics
  • 9.3.2 Alkaline niobates
  • 9.3.3 Bismuth-sodium titanates
  • 9.3.4 Barium-calcium titanate-zirconate
  • 9.3.5 Comparative data on properties for lead-free compositions
  • 9.4 Future trends in the development of lead-free ferropiezoelectric ceramics
  • References
  • III. Ferroelectric Metal Oxides Application
  • 10 Compositionally-graded ferroelectric ceramics and multilayers for electronic and sensing applications
  • 10.1 Review of the current situation
  • 10.2 Recent results
  • 10.2.1 Graded bulk BST (Ba, Sr)TiO3 ceramics
  • 10.2.2 Graded epitaxial multilayers
  • 10.3 Conclusions and trends
  • References
  • 11 Review of the most common relaxor ferroelectrics and their applications
  • 11.1 Introduction
  • 11.2 Lead-based perovskite relaxors.
  • 11.2.1 Lead magnesium niobate (PMN)
  • 11.2.2 PLZT
  • 11.2.3 Lead zinc niobate (PZN)
  • 11.3 Bismuth-layered perovskite relaxors
  • 11.3.1 BaBi2Ta2O9 and BaBi2Nb2O9
  • 11.3.2 BaBi4Ti4O15
  • References
  • Further reading
  • 12 Tunable ferroelectrics for frequency agile microwave and THz devices
  • 12.1 Introduction
  • 12.2 Techniques for measuring permittivity at microwave frequencies
  • 12.2.1 General properties of ferroelectric materials and figure of merit for microwave applications
  • 12.2.2 Microwave characterization techniques of ferroelectric materials
  • 12.2.2.1 Nonresonant methods
  • Reflection method
  • Transmission/reflection method
  • 12.2.2.2 Resonant methods
  • Resonator method
  • Resonant-perturbation method
  • Coplanar resonator method
  • 12.3 Ferroelectrics at THz frequencies
  • References
  • 13 Piezoelectric energy harvesting device based on quartz as a power generator
  • 13.1 Introduction
  • 13.2 Low-power piezoelectric EH generator
  • 13.2.1 The quartz
  • 13.2.2 Cutting hard and brittle materials
  • 13.3 Process manufacturing and functional experiments of quartz EH
  • 13.4 Conclusion
  • References
  • 14 Nonvolatile memories
  • 14.1 Introduction
  • 14.2 Nonvolatile memory device operation
  • 14.3 Radio frequency-sputtered CaCu3Ti4O12 thin film
  • 14.4 Spin-coated CaCu3Ti4O12 thin films
  • References
  • II. Magnetic and Multiferroic Metal Oxides
  • IV. Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics
  • 15 Theory of ferrimagnetism and ferrimagnetic metal oxides
  • 15.1 Introduction
  • 15.2 Magnetic fields in materials
  • 15.3 Magnetisms
  • 15.3.1 Diamagnetism
  • 15.3.2 Paramagnetism
  • 15.3.3 Antiferromagnetism
  • 15.3.4 Ferromagnetism
  • 15.3.5 Ferrimagnetism
  • 15.4 Ferrites
  • 15.4.1 Spinel ferrites
  • 15.4.2 Garnet ferrites
  • 15.4.3 Hexaferrites
  • 15.5 Theoretical aspects of ferrimagnetism.
  • 15.5.1 Superexchange in spinel ferrites
  • 15.5.2 Ion distribution in spinel ferrites
  • 15.5.2.1 Columbus energy
  • 15.5.2.2 Crystal field effect
  • 15.5.2.3 Covalent effect
  • 15.5.2.4 Short-range interaction energy
  • 15.5.2.5 Ordering in spinel ferrites
  • 15.5.2.6 Superexchange in ferrimagnetic ferrites
  • 15.5.2.7 N�A�el linear model (molecular field theory)
  • 15.6 Summary
  • References
  • 16 Metal oxide structure, crystal chemistry, and magnetic properties
  • 16.1 Magnetic elements/ions
  • 16.2 Magnetic oxides
  • 16.3 Magnetism of magnetic oxides
  • 16.3.1 Magnetism of metal-oxide nanoparticles
  • 16.4 Representative structures of magnetic oxides
  • 16.4.1 Spinel structure
  • 16.4.2 Garnet structure
  • 16.4.3 Magnetoplumbite structure
  • 16.4.4 Other common structures in magnetic oxides
  • References
  • 17 Review of methods for the preparation of magnetic metal oxides
  • 17.1 Introduction
  • 17.2 Synthesis of metal magnetic oxides
  • 17.2.1 Chemical methods
  • 17.2.1.1 Precipitation processing
  • 17.2.1.2 Microemulsion processing
  • 17.2.1.3 Sol-gel method
  • 17.2.1.4 Hydrothermal and solvothermal methods
  • 17.2.1.5 Thermal decomposition processing
  • 17.2.1.6 Sonochemical methods
  • 17.2.1.7 Solution-combustion synthesis (autocombustion processing)
  • 17.2.2 Physical methods
  • 17.2.3 Biological methods
  • 17.3 Synthesis of multiferroic materials
  • 17.4 Summary
  • References
  • 18 Ferrite-based composites for microwave absorbing applications
  • 18.1 Introduction
  • 18.2 Theoretic considerations
  • 18.2.1 Magnetic resonances
  • 18.2.1.1 Domain wall resonance
  • 18.2.1.2 Natural resonance
  • 18.2.1.3 Permeability spectra of natural resonance
  • Intrinsic resonant frequency (fr)
  • Damping coefficient (�I�)
  • Magnetic dispersions
  • 18.2.2 Effects on magnetic properties of ferrite composites
  • 18.2.2.1 Volume concentration.