Magnetic, ferroelectric, and multiferroic metal oxides /
Annotation
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2018]
|
Colección: | Metal oxides series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Magnetic, Ferroelectric, and Multiferroic Metal Oxides
- Copyright Page
- Contents
- List of contributors
- About the series editor
- About the editor
- Preface to the series
- Preface
- Introduction to ferroics and multiferroics: Essential background
- References
- I. Ferroelectric Metal Oxides
- I. Ferroelectrics: Fundamentals
- 1 General view of ferroelectrics: Origin of ferroelectricity in metal oxide ferroelectrics and ferroelectric properties
- 1.1 Introduction
- 1.2 Macroscopic phenomenological theory of ferroelectric phase transitions
- 1.3 Microscopic theory of ferroelectrics: the mean field
- 1.4 Dynamic properties of ferroelectrics: theory
- 1.5 Raman, infrared, and dielectric spectroscopy of ferroelectrics
- 1.6 Other spectroscopic techniques
- 1.7 The size and mechanical strain effect in ferroelectric ceramics and thin films
- 1.8 Summary
- References
- 2 Perovskite and Aurivillius: Types of ferroelectric metal oxides
- 2.1 Introduction
- 2.2 Perovskite structure
- 2.2.1 Substitutions in the barium titanate lattice
- 2.3 Aurivillius type of ferroelectric metal oxides
- 2.3.1 Crystal structure of the Aurivillius type of compounds
- 2.3.2 Substitution in Aurivillius type of structure
- 2.4 Summary
- References
- 3 Lead-free perovskite ferroelectrics
- 3.1 Introduction
- 3.2 Alkaline niobates
- 3.3 Alkaline bismuth titanates
- 3.4 Barium titanate-based piezoelectrics
- 3.5 Conclusions
- Acknowledgments
- References
- 4 Perovskite layer-structured ferroelectrics
- 4.1 General overview
- 4.2 Physical properties
- 4.2.1 Single and bilayer bismuth layer-structured ferroelectrics
- 4.2.2 Multilayer bismuth layer-structured ferroelectrics (m�a�#x9C;{605}3)
- 4.2.2.1 m=3
- 4.2.2.2 m=4
- 4.2.2.3 m�a�#x9C;{605}5
- Acknowledgements
- References
- II. Ferroelectric Metal Oxides: Synthesis and Deposition.
- 8.2.3 BaTiO3 thin films: Preparation techniques, the influence of intrinsic and extrinsic contributions on the functional p ...
- 8.2.4 BaTiO3 one-dimensional nanostructures: Preparation and properties
- 8.3 Recent approach to nanosized BaTiO3-based systems
- 8.3.1 Introduction
- 8.3.2 Undoped and doped BaTiO3 nanopowders prepared by wet-chemical methods
- 8.3.3 Undoped and doped nanostructured BaTiO3 ceramics consolidated by spark plasma sintering
- 8.3.4 Undoped and homovalently doped multilayer BaTiO3 thin films
- 8.3.4.1 Multilayer BaTiO3 thin films prepared by RF-magnetron sputtering
- 8.3.4.2 Multilayer Ba(Ti, Zr)O3 thin films prepared by the sol-gel method
- 8.3.5 Donor-doped BaTiO3 one-dimensional nanostructures prepared by template-mediated colloidal chemistry
- 8.4 Conclusions and trends
- Acknowledgements
- References
- 9 Ecological, lead-free ferroelectrics
- 9.1 Lead-free ferroelectrics
- 9.2 Preparation of lead-free piezoelectric ceramics with perovskite structure
- 9.3 Properties of lead-free piezoelectric ceramics
- 9.3.1 Aurivillius-type structure ceramics
- 9.3.2 Alkaline niobates
- 9.3.3 Bismuth-sodium titanates
- 9.3.4 Barium-calcium titanate-zirconate
- 9.3.5 Comparative data on properties for lead-free compositions
- 9.4 Future trends in the development of lead-free ferropiezoelectric ceramics
- References
- III. Ferroelectric Metal Oxides Application
- 10 Compositionally-graded ferroelectric ceramics and multilayers for electronic and sensing applications
- 10.1 Review of the current situation
- 10.2 Recent results
- 10.2.1 Graded bulk BST (Ba, Sr)TiO3 ceramics
- 10.2.2 Graded epitaxial multilayers
- 10.3 Conclusions and trends
- References
- 11 Review of the most common relaxor ferroelectrics and their applications
- 11.1 Introduction
- 11.2 Lead-based perovskite relaxors.
- 11.2.1 Lead magnesium niobate (PMN)
- 11.2.2 PLZT
- 11.2.3 Lead zinc niobate (PZN)
- 11.3 Bismuth-layered perovskite relaxors
- 11.3.1 BaBi2Ta2O9 and BaBi2Nb2O9
- 11.3.2 BaBi4Ti4O15
- References
- Further reading
- 12 Tunable ferroelectrics for frequency agile microwave and THz devices
- 12.1 Introduction
- 12.2 Techniques for measuring permittivity at microwave frequencies
- 12.2.1 General properties of ferroelectric materials and figure of merit for microwave applications
- 12.2.2 Microwave characterization techniques of ferroelectric materials
- 12.2.2.1 Nonresonant methods
- Reflection method
- Transmission/reflection method
- 12.2.2.2 Resonant methods
- Resonator method
- Resonant-perturbation method
- Coplanar resonator method
- 12.3 Ferroelectrics at THz frequencies
- References
- 13 Piezoelectric energy harvesting device based on quartz as a power generator
- 13.1 Introduction
- 13.2 Low-power piezoelectric EH generator
- 13.2.1 The quartz
- 13.2.2 Cutting hard and brittle materials
- 13.3 Process manufacturing and functional experiments of quartz EH
- 13.4 Conclusion
- References
- 14 Nonvolatile memories
- 14.1 Introduction
- 14.2 Nonvolatile memory device operation
- 14.3 Radio frequency-sputtered CaCu3Ti4O12 thin film
- 14.4 Spin-coated CaCu3Ti4O12 thin films
- References
- II. Magnetic and Multiferroic Metal Oxides
- IV. Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics
- 15 Theory of ferrimagnetism and ferrimagnetic metal oxides
- 15.1 Introduction
- 15.2 Magnetic fields in materials
- 15.3 Magnetisms
- 15.3.1 Diamagnetism
- 15.3.2 Paramagnetism
- 15.3.3 Antiferromagnetism
- 15.3.4 Ferromagnetism
- 15.3.5 Ferrimagnetism
- 15.4 Ferrites
- 15.4.1 Spinel ferrites
- 15.4.2 Garnet ferrites
- 15.4.3 Hexaferrites
- 15.5 Theoretical aspects of ferrimagnetism.
- 15.5.1 Superexchange in spinel ferrites
- 15.5.2 Ion distribution in spinel ferrites
- 15.5.2.1 Columbus energy
- 15.5.2.2 Crystal field effect
- 15.5.2.3 Covalent effect
- 15.5.2.4 Short-range interaction energy
- 15.5.2.5 Ordering in spinel ferrites
- 15.5.2.6 Superexchange in ferrimagnetic ferrites
- 15.5.2.7 N�A�el linear model (molecular field theory)
- 15.6 Summary
- References
- 16 Metal oxide structure, crystal chemistry, and magnetic properties
- 16.1 Magnetic elements/ions
- 16.2 Magnetic oxides
- 16.3 Magnetism of magnetic oxides
- 16.3.1 Magnetism of metal-oxide nanoparticles
- 16.4 Representative structures of magnetic oxides
- 16.4.1 Spinel structure
- 16.4.2 Garnet structure
- 16.4.3 Magnetoplumbite structure
- 16.4.4 Other common structures in magnetic oxides
- References
- 17 Review of methods for the preparation of magnetic metal oxides
- 17.1 Introduction
- 17.2 Synthesis of metal magnetic oxides
- 17.2.1 Chemical methods
- 17.2.1.1 Precipitation processing
- 17.2.1.2 Microemulsion processing
- 17.2.1.3 Sol-gel method
- 17.2.1.4 Hydrothermal and solvothermal methods
- 17.2.1.5 Thermal decomposition processing
- 17.2.1.6 Sonochemical methods
- 17.2.1.7 Solution-combustion synthesis (autocombustion processing)
- 17.2.2 Physical methods
- 17.2.3 Biological methods
- 17.3 Synthesis of multiferroic materials
- 17.4 Summary
- References
- 18 Ferrite-based composites for microwave absorbing applications
- 18.1 Introduction
- 18.2 Theoretic considerations
- 18.2.1 Magnetic resonances
- 18.2.1.1 Domain wall resonance
- 18.2.1.2 Natural resonance
- 18.2.1.3 Permeability spectra of natural resonance
- Intrinsic resonant frequency (fr)
- Damping coefficient (�I�)
- Magnetic dispersions
- 18.2.2 Effects on magnetic properties of ferrite composites
- 18.2.2.1 Volume concentration.