Cargando…

Automated Machine Learning with Microsoft Azure /

A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key Features Create, deploy, productionalize, and scale automated machine learning solutions on Microsoft...

Descripción completa

Detalles Bibliográficos
Autor principal: Sawyers, Dennis (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key Features Create, deploy, productionalize, and scale automated machine learning solutions on Microsoft Azure Improve the accuracy of your ML models through automatic data featurization and model training Increase productivity in your organization by using artificial intelligence to solve common problems Book Description Automated Machine Learning with Microsoft Azure helps you to build high-performing, accurate machine learning models in record time. It allows anyone to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. With a series of clicks on a guided user interface (GUI), novices and seasoned data scientists alike can train and deploy machine learning solutions to production with ease. This book will teach you how to use Azure AutoML with both the GUI as well as the AzureML Python software development kit (SDK) in a careful, step-by-step way. First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect. What you will learn Understand how to train classification, regression, and forecasting ML algorithms with Azure AutoML Prepare data for Azure AutoML to ensure smooth model training and deployment Adjust AutoML configuration settings to make your models as accurate as possible Determine when to use a batch-scoring solution versus a real-time scoring solution Productionalize your AutoML solution with Azure Machine Learning pipelines Create real-time scoring solutions with AutoML and Azure Kubernetes Service Discover how to quickly deliver value and earn business trust using AutoML Train a large number of AutoML models at once using the AzureM ...
Descripción Física:1 online resource (340 pages)