Cargando…

Automated Feature Engineering

Presented by Namita Lokare Feature engineering plays a significant role in the success of a machine learning model. Most of the effort in training a model goes into data preparation and choosing the right representation. In this talk, I will focus on a robust feature engineering method, Randomized U...

Descripción completa

Detalles Bibliográficos
Autor principal: Salon, Data (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Data Science Salon, 2019.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1192531840
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
007 vz czazuu
008 090820s2019 xx 018 vleng
040 |a AU@  |b eng  |c AU@  |d TOH  |d NZCPL  |d OCLCF  |d OCLCO  |d FZL  |d OCLCQ  |d DXU  |d OCLCQ 
019 |a 1224593762  |a 1232116765  |a 1305897444  |a 1351577830  |a 1380767273  |a 1385505683 
020 |z 0000000T91R98JO0 
024 8 |a 00000OOT9LR98JO0 
029 0 |a AU@  |b 000067830743 
035 |a (OCoLC)1192531840  |z (OCoLC)1224593762  |z (OCoLC)1232116765  |z (OCoLC)1305897444  |z (OCoLC)1351577830  |z (OCoLC)1380767273  |z (OCoLC)1385505683 
082 0 4 |a E VIDEO 
049 |a UAMI 
100 1 |a Salon, Data,  |e author. 
245 1 0 |a Automated Feature Engineering  |h [electronic resource] /  |c Salon, Data. 
250 |a 1st edition. 
264 1 |b Data Science Salon,  |c 2019. 
300 |a 1 online resource (1 video file, approximately 18 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file 
520 |a Presented by Namita Lokare Feature engineering plays a significant role in the success of a machine learning model. Most of the effort in training a model goes into data preparation and choosing the right representation. In this talk, I will focus on a robust feature engineering method, Randomized Union of Locally Linear Subspaces (RULLS). We generate sparse, non-negative, and rotation invariant features in an unsupervised fashion. RULLS aggregates features from a random union of subspaces by describing each point using globally chosen landmarks. These landmarks serve as anchor points for choosing subspaces. Our method provides a way to select features that are relevant in the neighborhood around these chosen landmarks. Distances from each data point to k closest landmarks are encoded in the feature matrix. The final feature representation is a union of features from all chosen subspaces. The effectiveness of our algorithm is shown on various real-world datasets for tasks such as clustering and classification of raw data and in the presence of noise. We compare our method with existing feature generation methods. Results show a high performance of our method on both classification and clustering tasks. 
538 |a Mode of access: World Wide Web. 
542 |f Copyright © Formulatedby  |g 2019 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title screen (viewed September 10, 2019) 
533 |a Electronic reproduction.  |b Boston, MA :  |c Safari.  |n Available via World Wide Web.,  |d 2019. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
655 4 |a Electronic videos. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/00000OOT9LR98JO0/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP