Automated Feature Engineering
Presented by Namita Lokare Feature engineering plays a significant role in the success of a machine learning model. Most of the effort in training a model goes into data preparation and choosing the right representation. In this talk, I will focus on a robust feature engineering method, Randomized U...
Autor principal: | |
---|---|
Autor Corporativo: | |
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
Data Science Salon,
2019.
|
Edición: | 1st edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Sumario: | Presented by Namita Lokare Feature engineering plays a significant role in the success of a machine learning model. Most of the effort in training a model goes into data preparation and choosing the right representation. In this talk, I will focus on a robust feature engineering method, Randomized Union of Locally Linear Subspaces (RULLS). We generate sparse, non-negative, and rotation invariant features in an unsupervised fashion. RULLS aggregates features from a random union of subspaces by describing each point using globally chosen landmarks. These landmarks serve as anchor points for choosing subspaces. Our method provides a way to select features that are relevant in the neighborhood around these chosen landmarks. Distances from each data point to k closest landmarks are encoded in the feature matrix. The final feature representation is a union of features from all chosen subspaces. The effectiveness of our algorithm is shown on various real-world datasets for tasks such as clustering and classification of raw data and in the presence of noise. We compare our method with existing feature generation methods. Results show a high performance of our method on both classification and clustering tasks. |
---|---|
Descripción Física: | 1 online resource (1 video file, approximately 18 min.) |