Cargando…

R : mining spatial, text, web, and social media data : create and customize data mioning algorithms : a course in three modules.

Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Makhabel, Bater (Autor), Mishra, Pradeepta (Autor), Danneman, Nathan (Autor), Heimann, Richard (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn993258595
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170710s2017 enka ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TEFOD  |d STF  |d TOH  |d COO  |d N$T  |d UOK  |d CEF  |d KSU  |d VT2  |d C6I  |d UAB  |d K6U  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781788290814  |q (electronic bk.) 
020 |a 178829081X  |q (electronic bk.) 
020 |z 9781788293747 
020 |a 1788293746 
020 |a 9781788293747 
029 1 |a GBVCP  |b 1004865155 
035 |a (OCoLC)993258595 
037 |a CL0500000874  |b Safari Books Online 
037 |a 14BB98A0-0FE6-4928-8E87-D1705B744B2C  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D343 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Makhabel, Bater,  |e author. 
245 1 0 |a R :  |b mining spatial, text, web, and social media data : create and customize data mioning algorithms : a course in three modules. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from title page (viewed July 6, 2017). 
500 |a "Bater Makhabel, Pradeepta Mishra, Nathan Danneman, Richard Heimann."--Cover. 
500 |a "Learning path"--Cover. 
504 |a Includes bibliographical references and index. 
520 |a Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining - social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands... 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a R (Computer program language) 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a R (Langage de programmation) 
650 7 |a MATHEMATICS / Applied  |2 bisacsh 
650 7 |a MATHEMATICS / Probability & Statistics / General  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Mishra, Pradeepta,  |e author. 
700 1 |a Danneman, Nathan,  |e author. 
700 1 |a Heimann, Richard,  |e author. 
776 0 8 |i Print version:  |a Makhabel, Bater.  |t R: mining spatial, text, web, and social media data : create and customize data mioning algorithms : a course in three modules.  |d Birmingham, England ; Mumbai, India : Packt Publishing, 2017, c2016  |z 9781788293747 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788293747/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1538398 
994 |a 92  |b IZTAP