Cargando…

Multi-Label Dimensionality Reduction /

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data minin...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Liang (Autor), Ji, Shuiwang, 1977- (Autor), Ye, Jieping (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chapman and Hall/CRC, 2016.
Edición:1st.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_ocn990193145
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 170608s2016 xx a go 000 0 eng d
040 |a NLE  |b eng  |e rda  |c NLE  |d OCLCQ  |d NTE  |d OCLCO  |d TAC  |d FZL  |d OCLCQ 
019 |a 1302697889  |a 1351596652  |a 1355685785  |a 1380767045 
020 |a 9781439806166  |q (PDF) 
020 |a 1439806160  |q (PDF) 
020 |a 9781439806159 
020 |a 1439806152 
020 |a 9780429148200 
020 |a 0429148208 
024 8 |a KE83962 
024 8 |a 9781439806166 
029 1 |a AU@  |b 000068857503 
035 |a (OCoLC)990193145  |z (OCoLC)1302697889  |z (OCoLC)1351596652  |z (OCoLC)1355685785  |z (OCoLC)1380767045 
037 |a TANDF_201743  |b Ingram Content Group 
082 0 4 |a E REFERENCE 
049 |a UAMI 
100 1 |a Sun, Liang,  |e author  |u Arizona State University, Tempe, USA 
245 1 0 |a Multi-Label Dimensionality Reduction /  |c Liang Sun, Shuiwang Ji, Jieping Ye. 
250 |a 1st. 
264 1 |b Chapman and Hall/CRC,  |c 2016. 
300 |a 1 online resource (208 pages :  |b 14 illustrations) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks. 
542 |f Copyright © Chapman and Hall/CRC 2014  |g 2014 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Ji, Shuiwang,  |d 1977-  |e author. 
700 1 |a Ye, Jieping,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781439806166/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP