|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
OR_ocn990193145 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
170608s2016 xx a go 000 0 eng d |
040 |
|
|
|a NLE
|b eng
|e rda
|c NLE
|d OCLCQ
|d NTE
|d OCLCO
|d TAC
|d FZL
|d OCLCQ
|
019 |
|
|
|a 1302697889
|a 1351596652
|a 1355685785
|a 1380767045
|
020 |
|
|
|a 9781439806166
|q (PDF)
|
020 |
|
|
|a 1439806160
|q (PDF)
|
020 |
|
|
|a 9781439806159
|
020 |
|
|
|a 1439806152
|
020 |
|
|
|a 9780429148200
|
020 |
|
|
|a 0429148208
|
024 |
8 |
|
|a KE83962
|
024 |
8 |
|
|a 9781439806166
|
029 |
1 |
|
|a AU@
|b 000068857503
|
035 |
|
|
|a (OCoLC)990193145
|z (OCoLC)1302697889
|z (OCoLC)1351596652
|z (OCoLC)1355685785
|z (OCoLC)1380767045
|
037 |
|
|
|a TANDF_201743
|b Ingram Content Group
|
082 |
0 |
4 |
|a E REFERENCE
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Sun, Liang,
|e author
|u Arizona State University, Tempe, USA
|
245 |
1 |
0 |
|a Multi-Label Dimensionality Reduction /
|c Liang Sun, Shuiwang Ji, Jieping Ye.
|
250 |
|
|
|a 1st.
|
264 |
|
1 |
|b Chapman and Hall/CRC,
|c 2016.
|
300 |
|
|
|a 1 online resource (208 pages :
|b 14 illustrations)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
520 |
|
|
|a Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks.
|
542 |
|
|
|f Copyright © Chapman and Hall/CRC 2014
|g 2014
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
700 |
1 |
|
|a Ji, Shuiwang,
|d 1977-
|e author.
|
700 |
1 |
|
|a Ye, Jieping,
|e author.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781439806166/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|