Multi-Label Dimensionality Reduction /
Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data minin...
Autores principales: | , , |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chapman and Hall/CRC,
2016.
|
Edición: | 1st. |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Sumario: | Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks. |
---|---|
Descripción Física: | 1 online resource (208 pages : 14 illustrations) |
ISBN: | 9781439806166 1439806160 9781439806159 1439806152 9780429148200 0429148208 |