Cargando…

Multi-Label Dimensionality Reduction /

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data minin...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Liang (Autor), Ji, Shuiwang, 1977- (Autor), Ye, Jieping (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chapman and Hall/CRC, 2016.
Edición:1st.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks.
Descripción Física:1 online resource (208 pages : 14 illustrations)
ISBN:9781439806166
1439806160
9781439806159
1439806152
9780429148200
0429148208