Cargando…

A/B testing, a data science perspective : an introduction to data and statistics for improved U/X /

"Deciding whether or not to launch a new product or feature is a resource management bet for any Internet business. Conducting rigorous online A/B tests flattens the risk. Drawing on her experience at Airbnb, data scientist Lisa Qian offers a practical ten-step guide to designing and executing...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Qian, Lisa (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2015]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:"Deciding whether or not to launch a new product or feature is a resource management bet for any Internet business. Conducting rigorous online A/B tests flattens the risk. Drawing on her experience at Airbnb, data scientist Lisa Qian offers a practical ten-step guide to designing and executing statistically sound A/B tests. Discover best practices for defining test goals and hypotheses; Learn to identify controls, treatments, key metrics, and data collection needs; Understand the role of appropriate logging in data collection; Determine how to frame your tests (size of difference detection, visitor sample size, etc.); Master the importance of testing for systematic biases; Run power tests to determine how much data to collect; Learn how experimenting on logged out users can introduce bias; Understand when cannibalization is an issue and how to deal with it; Review accepted A/B testing tools (Google Analytics, Vanity, Unbounce, among others)."--Resource description page.
Notas:Title from title screen (viewed October 20, 2015).
Date of publication from resource description page.
Descripción Física:1 online resource (1 streaming video file (1 hr., 16 min., 49 sec.)) : digital, sound, color