Silicon photonics design /
From design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. In-depth discussion of real-world issues and fabrication challenges ensures that students are...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, United Kingdom :
Cambridge University Press,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Fabless silicon photonics
- 1.1. Introduction
- 1.2. Silicon photonics: the next fabless semiconductor industry
- 1.2.1. Historical context [--] Photonics
- 1.3. Applications
- 1.3.1. Data communication
- 1.4. Technical challenges and the state of the art
- 1.4.1. Waveguides and passive components
- 1.4.2. Modulators
- 1.4.3. Photodetectors
- 1.4.4. Light sources
- 1.4.5. Approaches to photonic[--]electronic integration
- Monolithic integration
- Multi-chip integration
- 1.5. Opportunities
- 1.5.1. Device engineering
- 1.5.2. Photonic system engineering
- A transition from devices to systems
- 1.5.3. Tools and support infrastructure
- Electronic[--]photonic co-design
- DFM and yield management
- 1.5.4. Basic science
- 1.5.5. Process standardization and a history of MPW services
- ePIXfab and Europractice
- IME
- OpSIS
- CMC Microsystems
- Other organizations
- References
- 2. Modelling and design approaches
- 2.1. Optical waveguide mode solver
- 2.2. Wave propagation
- 2.2.1. 3D FDTD
- FDTD modelling procedure
- 2.2.2. 2D FDTD
- 2.2.3. Additional propagation methods
- 2D FDTD with Effective Index Method
- Beam Propagation Method (BPM)
- Eigenmode Expansion Method (EME)
- Coupled Mode Theory (CMT)
- Transfer Matrix Method (TMM)
- 2.2.4. Passive optical components
- 2.3. Optoelectronic models
- 2.4. Microwave modelling
- 2.5. Thermal modelling
- 2.6. Photonic circuit modelling
- 2.7. Physical layout
- 2.8. Software tools integration
- References
- 3. Optical materials and waveguides
- 3.1. Silicon-on-insulator
- 3.1.1. Silicon
- Silicon [--] wavelength dependence
- Silicon [--] temperature dependence
- 3.1.2. Silicon dioxide
- 3.2. Waveguides
- 3.2.1. Waveguide design
- 3.2.2. 1D slab waveguide [--] analytic method
- 3.2.3. Numerical modelling of waveguides
- 3.2.4. 1D slab [--] numerical
- Convergence tests
- Parameter sweep [--] slab thickness
- 3.2.5. Effective Index Method
- 3.2.6. Effective Index Method [--] analytic
- 3.2.7. Waveguide mode profiles [--] 2D calculations
- 3.2.8. Waveguide width [--] effective index
- 3.2.9. Wavelength dependence
- 3.2.10. Compact models for waveguides
- 3.2.11. Waveguide loss
- 3.3. Bent waveguides
- 3.3.1. 3D FDTD bend simulations
- 3.3.2. Eigenmode bend simulations
- 3.4. Problems
- 3.5. Code listings
- References
- 4. Fundamental building blocks
- 4.1. Directional couplers
- 4.1.1. Waveguide mode solver approach
- Coupler-gap dependence
- Coupler-length dependence
- Wavelength dependence
- 4.1.2. Phase
- 4.1.3. Experimental data
- 4.1.4. FDTD modelling
- FDTD versus mode solver
- 4.1.5. Sensitivity to fabrication
- 4.1.6. Strip waveguide directional couplers
- 4.1.7. Parasitic coupling
- Delta beta coupling
- 4.2. Y-branch
- 4.3. Mach[--]Zehnder interferometer
- 4.4. Ring resonators
- 4.4.1. Optical transfer function
- 4.4.2. Ring resonator experimental results
- 4.5. Waveguide Bragg grating filters
- 4.5.1. Theory
- Grating coupling coefficient
- 4.5.2. Design
- Transfer Matrix Method
- Grating physical structure design
- Modelling gratings using FDTD
- 4.5.3. Experimental Bragg gratings
- Strip waveguide gratings
- Rib waveguide gratings
- Grating period
- 4.5.4. Empirical models for fabricated gratings
- Computation lithography models
- Additional fabrication considerations
- 4.5.5. Spiral Bragg gratings
- Thermal sensitivity
- 4.5.6. Phase-shifted Bragg gratings
- 4.5.7. Multi-period Bragg gratings
- 4.5.8. Grating-assisted contra-directional couplers
- 4.6. Problems
- 4.7. Code listings
- References
- 5. Optical I/O
- 5.1. The challenge of optical coupling to silicon photonic chips
- 5.2. Grating coupler
- 5.2.1. Performance
- 5.2.2. Theory
- 5.2.3. Design methodology
- Analytic grating coupler design
- Design using 2D FDTD simulations
- Results
- Design parameters
- Cladding and buried oxide
- Compact design [--] focusing
- Mask layout
- 3D simulation
- 5.2.4. Experimental results
- 5.3. Edge coupler
- 5.3.1. Nano-taper edge coupler
- Mode overlap calculation approach
- FDTD approach
- 5.3.2. Edge coupler with overlay waveguide
- Eigenmode expansion method
- 5.4. Polarization
- 5.5. Problems
- 5.6. Code listings
- References
- 6. Modulators
- 6.1. Plasma dispersion effect
- 6.1.1. Silicon, carrier density dependence
- 6.2. pn-Junction phase shifter
- 6.2.1. pn-Junction carrier distribution
- 6.2.2. Optical phase response
- 6.2.3. Small-signal response
- 6.2.4. Numerical TCAD modelling of pn-junctions
- 6.3. Micro-ring modulators
- 6.3.1. Ring tuneability
- 6.3.2. Small-signal modulation response
- 6.3.3. Ring modulator design
- 6.4. Forward-biased PIN junction
- 6.4.1. Variable optical attenuator
- 6.5. Active tuning
- 6.5.1. PIN phase shifter
- 6.5.2. Thermal phase shifter
- 6.6. Thermo-optic switch
- 6.7. Problems
- 6.8. Code listings
- References
- 7. Detectors
- 7.1. Performance parameters
- 7.1.1. Responsivity
- 7.1.2. Bandwidth
- Transit time
- RC response
- Dark current
- 7.2. Fabrication
- 7.3. Types of detectors
- 7.3.1. Photoconductive detector
- 7.3.2. PIN detector
- 7.3.3. Avalanche detector
- Charge region design
- 7.4. Design considerations
- 7.4.1. PIN junction orientation
- 7.4.2. Detector geometry
- Detector length
- Detector width
- Detector height
- 7.4.3. Contacts
- Contact material
- Contact geometry
- 7.4.4. External load on the detector
- 7.5. Detector modelling
- 7.5.1. 3D FDTD optical simulations
- 7.5.2. Electronic simulations
- 7.6. Problems
- 7.7. Code listings
- References
- 8. Lasers
- 8.1. External lasers
- 8.2. Laser modelling
- 8.3. Co-packaging
- 8.3.1. Pre-made laser
- 8.3.2. External cavity lasers
- 8.3.3. Etched-pit embedded epitaxy
- 8.4. Hybrid silicon lasers
- 8.5. Monolithic lasers
- 8.5.1. Ill[--]V Monolithic growth
- 8.5.2. Germanium lasers
- 8.6. Alternative light sources
- 8.7. Problem
- References
- 9. Photonic circuit modelling
- 9.1. Need for photonic circuit modelling
- 9.2. Components for system design
- 9.3. Compact models
- 9.3.1. Empirical or equivalent circuit models
- 9.3.2. S-parameters
- 9.4. Directional coupler [--] compact model
- 9.4.1. FDTD simulations
- 9.4.2. FDTD S-parameters
- Directional coupler S-parameters
- 9.4.3. Empirical model [--] polynomial
- 9.4.4. S-parameter model passivity
- Passivity assessment
- Passivity enforcement
- 9.5. Ring modulator [--] circuit model
- 9.6. Grating coupler [--] S-parameters
- 9.6.1. Grating coupler circuits
- 9.7. Code listings
- References
- 10. Tools and techniques
- 10.1. Process design kit (PDK)
- 10.1.1. Fabrication process parameters
- Silicon thickness and etch
- GDS layer map
- Design rules
- 10.1.2. Library
- 10.1.3. Schematic capture
- 10.1.4. Circuit export
- 10.1.5. Schematic-driven layout
- 10.1.6. Design rule checking
- 10.1.7. Layout versus schematic
- 10.2. Mask layout
- 10.2.1. Components
- 10.2.2. Layout for electrical and optical testing
- 10.2.3. Approaches for fast GDS layout
- 10.2.4. Approaches for space-efficient GDS layout
- References
- 11. Fabrication
- 11.1. Fabrication non-uniformity
- 11.1.1. Lithography process contours
- 11.1.2. Corner analysis
- 11.1.3. On-chip non-uniformity, experimental results
- Ring resonators
- Grating couplers
- 11.2. Problems
- References
- 12. Testing and packaging
- 12.1. Electrical and optical interfacing
- 12.1.1. Optical interfaces
- Grating couplers
- Edge couplers
- Individual fibres
- Spot-size converter
- Fibre array
- Free-space coupling
- Fibre taper coupling
- 12.1.2. Electrical interfaces
- Bond pads
- Probing
- Wire bonding
- Flip-chip bonding
- 12.2. Automated optical probe stations
- 12.2.1. Parts
- Sample stage
- Fibre array probe
- Electrical probes
- Microscopes
- 12.2.2. Software
- 12.2.3. Operation
- Loading and aligning a chip/wafer
- Aligning the fibre array
- Chip
- registration
- Automated device testing
- 12.2.4. Optical test equipment
- 12.3. Design for test
- 12.3.1. Optical power budgets
- 12.3.2. Layout considerations
- 12.3.3. Design review and checklist
- References
- 13. Silicon photonic system example
- 13.1. Wavelength division multiplexed transmitter
- 13.1.1. Ring-based WDM transmitter architectures
- 13.1.2. Common-bus WDM transmitter
- 13.1.3. Mod-Mux WDM transmitter
- 13.1.4. Conclusion
- References.