Cargando…

Silicon photonics design /

From design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. In-depth discussion of real-world issues and fabrication challenges ensures that students are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chrostowski, Lukas (Autor), Hochberg, Michael E. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, United Kingdom : Cambridge University Press, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Fabless silicon photonics
  • 1.1. Introduction
  • 1.2. Silicon photonics: the next fabless semiconductor industry
  • 1.2.1. Historical context [--] Photonics
  • 1.3. Applications
  • 1.3.1. Data communication
  • 1.4. Technical challenges and the state of the art
  • 1.4.1. Waveguides and passive components
  • 1.4.2. Modulators
  • 1.4.3. Photodetectors
  • 1.4.4. Light sources
  • 1.4.5. Approaches to photonic[--]electronic integration
  • Monolithic integration
  • Multi-chip integration
  • 1.5. Opportunities
  • 1.5.1. Device engineering
  • 1.5.2. Photonic system engineering
  • A transition from devices to systems
  • 1.5.3. Tools and support infrastructure
  • Electronic[--]photonic co-design
  • DFM and yield management
  • 1.5.4. Basic science
  • 1.5.5. Process standardization and a history of MPW services
  • ePIXfab and Europractice
  • IME
  • OpSIS
  • CMC Microsystems
  • Other organizations
  • References
  • 2. Modelling and design approaches
  • 2.1. Optical waveguide mode solver
  • 2.2. Wave propagation
  • 2.2.1. 3D FDTD
  • FDTD modelling procedure
  • 2.2.2. 2D FDTD
  • 2.2.3. Additional propagation methods
  • 2D FDTD with Effective Index Method
  • Beam Propagation Method (BPM)
  • Eigenmode Expansion Method (EME)
  • Coupled Mode Theory (CMT)
  • Transfer Matrix Method (TMM)
  • 2.2.4. Passive optical components
  • 2.3. Optoelectronic models
  • 2.4. Microwave modelling
  • 2.5. Thermal modelling
  • 2.6. Photonic circuit modelling
  • 2.7. Physical layout
  • 2.8. Software tools integration
  • References
  • 3. Optical materials and waveguides
  • 3.1. Silicon-on-insulator
  • 3.1.1. Silicon
  • Silicon [--] wavelength dependence
  • Silicon [--] temperature dependence
  • 3.1.2. Silicon dioxide
  • 3.2. Waveguides
  • 3.2.1. Waveguide design
  • 3.2.2. 1D slab waveguide [--] analytic method
  • 3.2.3. Numerical modelling of waveguides
  • 3.2.4. 1D slab [--] numerical
  • Convergence tests
  • Parameter sweep [--] slab thickness
  • 3.2.5. Effective Index Method
  • 3.2.6. Effective Index Method [--] analytic
  • 3.2.7. Waveguide mode profiles [--] 2D calculations
  • 3.2.8. Waveguide width [--] effective index
  • 3.2.9. Wavelength dependence
  • 3.2.10. Compact models for waveguides
  • 3.2.11. Waveguide loss
  • 3.3. Bent waveguides
  • 3.3.1. 3D FDTD bend simulations
  • 3.3.2. Eigenmode bend simulations
  • 3.4. Problems
  • 3.5. Code listings
  • References
  • 4. Fundamental building blocks
  • 4.1. Directional couplers
  • 4.1.1. Waveguide mode solver approach
  • Coupler-gap dependence
  • Coupler-length dependence
  • Wavelength dependence
  • 4.1.2. Phase
  • 4.1.3. Experimental data
  • 4.1.4. FDTD modelling
  • FDTD versus mode solver
  • 4.1.5. Sensitivity to fabrication
  • 4.1.6. Strip waveguide directional couplers
  • 4.1.7. Parasitic coupling
  • Delta beta coupling
  • 4.2. Y-branch
  • 4.3. Mach[--]Zehnder interferometer
  • 4.4. Ring resonators
  • 4.4.1. Optical transfer function
  • 4.4.2. Ring resonator experimental results
  • 4.5. Waveguide Bragg grating filters
  • 4.5.1. Theory
  • Grating coupling coefficient
  • 4.5.2. Design
  • Transfer Matrix Method
  • Grating physical structure design
  • Modelling gratings using FDTD
  • 4.5.3. Experimental Bragg gratings
  • Strip waveguide gratings
  • Rib waveguide gratings
  • Grating period
  • 4.5.4. Empirical models for fabricated gratings
  • Computation lithography models
  • Additional fabrication considerations
  • 4.5.5. Spiral Bragg gratings
  • Thermal sensitivity
  • 4.5.6. Phase-shifted Bragg gratings
  • 4.5.7. Multi-period Bragg gratings
  • 4.5.8. Grating-assisted contra-directional couplers
  • 4.6. Problems
  • 4.7. Code listings
  • References
  • 5. Optical I/O
  • 5.1. The challenge of optical coupling to silicon photonic chips
  • 5.2. Grating coupler
  • 5.2.1. Performance
  • 5.2.2. Theory
  • 5.2.3. Design methodology
  • Analytic grating coupler design
  • Design using 2D FDTD simulations
  • Results
  • Design parameters
  • Cladding and buried oxide
  • Compact design [--] focusing
  • Mask layout
  • 3D simulation
  • 5.2.4. Experimental results
  • 5.3. Edge coupler
  • 5.3.1. Nano-taper edge coupler
  • Mode overlap calculation approach
  • FDTD approach
  • 5.3.2. Edge coupler with overlay waveguide
  • Eigenmode expansion method
  • 5.4. Polarization
  • 5.5. Problems
  • 5.6. Code listings
  • References
  • 6. Modulators
  • 6.1. Plasma dispersion effect
  • 6.1.1. Silicon, carrier density dependence
  • 6.2. pn-Junction phase shifter
  • 6.2.1. pn-Junction carrier distribution
  • 6.2.2. Optical phase response
  • 6.2.3. Small-signal response
  • 6.2.4. Numerical TCAD modelling of pn-junctions
  • 6.3. Micro-ring modulators
  • 6.3.1. Ring tuneability
  • 6.3.2. Small-signal modulation response
  • 6.3.3. Ring modulator design
  • 6.4. Forward-biased PIN junction
  • 6.4.1. Variable optical attenuator
  • 6.5. Active tuning
  • 6.5.1. PIN phase shifter
  • 6.5.2. Thermal phase shifter
  • 6.6. Thermo-optic switch
  • 6.7. Problems
  • 6.8. Code listings
  • References
  • 7. Detectors
  • 7.1. Performance parameters
  • 7.1.1. Responsivity
  • 7.1.2. Bandwidth
  • Transit time
  • RC response
  • Dark current
  • 7.2. Fabrication
  • 7.3. Types of detectors
  • 7.3.1. Photoconductive detector
  • 7.3.2. PIN detector
  • 7.3.3. Avalanche detector
  • Charge region design
  • 7.4. Design considerations
  • 7.4.1. PIN junction orientation
  • 7.4.2. Detector geometry
  • Detector length
  • Detector width
  • Detector height
  • 7.4.3. Contacts
  • Contact material
  • Contact geometry
  • 7.4.4. External load on the detector
  • 7.5. Detector modelling
  • 7.5.1. 3D FDTD optical simulations
  • 7.5.2. Electronic simulations
  • 7.6. Problems
  • 7.7. Code listings
  • References
  • 8. Lasers
  • 8.1. External lasers
  • 8.2. Laser modelling
  • 8.3. Co-packaging
  • 8.3.1. Pre-made laser
  • 8.3.2. External cavity lasers
  • 8.3.3. Etched-pit embedded epitaxy
  • 8.4. Hybrid silicon lasers
  • 8.5. Monolithic lasers
  • 8.5.1. Ill[--]V Monolithic growth
  • 8.5.2. Germanium lasers
  • 8.6. Alternative light sources
  • 8.7. Problem
  • References
  • 9. Photonic circuit modelling
  • 9.1. Need for photonic circuit modelling
  • 9.2. Components for system design
  • 9.3. Compact models
  • 9.3.1. Empirical or equivalent circuit models
  • 9.3.2. S-parameters
  • 9.4. Directional coupler [--] compact model
  • 9.4.1. FDTD simulations
  • 9.4.2. FDTD S-parameters
  • Directional coupler S-parameters
  • 9.4.3. Empirical model [--] polynomial
  • 9.4.4. S-parameter model passivity
  • Passivity assessment
  • Passivity enforcement
  • 9.5. Ring modulator [--] circuit model
  • 9.6. Grating coupler [--] S-parameters
  • 9.6.1. Grating coupler circuits
  • 9.7. Code listings
  • References
  • 10. Tools and techniques
  • 10.1. Process design kit (PDK)
  • 10.1.1. Fabrication process parameters
  • Silicon thickness and etch
  • GDS layer map
  • Design rules
  • 10.1.2. Library
  • 10.1.3. Schematic capture
  • 10.1.4. Circuit export
  • 10.1.5. Schematic-driven layout
  • 10.1.6. Design rule checking
  • 10.1.7. Layout versus schematic
  • 10.2. Mask layout
  • 10.2.1. Components
  • 10.2.2. Layout for electrical and optical testing
  • 10.2.3. Approaches for fast GDS layout
  • 10.2.4. Approaches for space-efficient GDS layout
  • References
  • 11. Fabrication
  • 11.1. Fabrication non-uniformity
  • 11.1.1. Lithography process contours
  • 11.1.2. Corner analysis
  • 11.1.3. On-chip non-uniformity, experimental results
  • Ring resonators
  • Grating couplers
  • 11.2. Problems
  • References
  • 12. Testing and packaging
  • 12.1. Electrical and optical interfacing
  • 12.1.1. Optical interfaces
  • Grating couplers
  • Edge couplers
  • Individual fibres
  • Spot-size converter
  • Fibre array
  • Free-space coupling
  • Fibre taper coupling
  • 12.1.2. Electrical interfaces
  • Bond pads
  • Probing
  • Wire bonding
  • Flip-chip bonding
  • 12.2. Automated optical probe stations
  • 12.2.1. Parts
  • Sample stage
  • Fibre array probe
  • Electrical probes
  • Microscopes
  • 12.2.2. Software
  • 12.2.3. Operation
  • Loading and aligning a chip/wafer
  • Aligning the fibre array
  • Chip
  • registration
  • Automated device testing
  • 12.2.4. Optical test equipment
  • 12.3. Design for test
  • 12.3.1. Optical power budgets
  • 12.3.2. Layout considerations
  • 12.3.3. Design review and checklist
  • References
  • 13. Silicon photonic system example
  • 13.1. Wavelength division multiplexed transmitter
  • 13.1.1. Ring-based WDM transmitter architectures
  • 13.1.2. Common-bus WDM transmitter
  • 13.1.3. Mod-Mux WDM transmitter
  • 13.1.4. Conclusion
  • References.