Cargando…

Spectroscopic ellipsometry : practical application to thin film characterization /

Ellipsometry is an experimental technique for determining the thickness and optical properties of thin films. It is ideally suited for films ranging in thickness from subnanometer to several microns. Spectroscopic measurements have greatly expanded the capabilities of this technique and introduced i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tompkins, Harland G. (Autor), Hilfiker, James N. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2016.
Colección:Materials characterization and analysis collection,
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Perspective, previous works, and purpose of this volume
  • 1.1 Historical aspects
  • 1.2 Focus of this book and target audience
  • 1.3 Overview of topics.
  • 2. Basic physical phenomena
  • 2.1 The electromagnetic wave
  • 2.2 Interactions between the electromagnetic wave and matter
  • 2.3 Laws of reflection and refraction
  • 2.4 Polarized light
  • 2.5 The reflection and transmission of light
  • 2.6 Measurement quantities.
  • 3. Spectroscopic ellipsometry components and instrumentation
  • 3.1 Components of a spectroscopic ellipsometer
  • 3.2 Spectroscopic ellipsometers.
  • 4. General data features
  • 4.1 Spectra for substrates
  • 4.2 Spectra for films on a substrate.
  • 5. Representing optical functions
  • 5.1 Tabulated list
  • 5.2 Dispersion equations
  • 5.3 The Cauchy equation, a dispersion equation for transparent regions
  • 5.4 Oscillator models
  • 5.5 B-spline.
  • 6. Optical data analysis
  • 6.1 Direct calculation: pseudo-optical constants
  • 6.2 Data analysis, the problem
  • 6.3 Data analysis, the approach.
  • 7. Transparent thin films
  • 7.1 Data features of transparent films
  • 7.2 Fitting a transparent film with known index
  • 7.3 Fitting a transparent film with an unknown index
  • 7.4 Example: dielectric SiNx film on Si
  • 7.5 Example: dielectric SiO2 film on glass.
  • 8. Roughness
  • 8.1 Macroscopic roughness
  • 8.2 Microscopic roughness
  • 8.3 Effective medium approximations
  • 8.4 Rough film example.
  • 9. Very thin films
  • 9.1 Determining thickness with known optical functions
  • 9.2 Determining optical constants of a very thin film
  • 9.3 Distinguishing one film material from another.
  • 10. Thin films with absorbing spectral regions
  • 10.1 Selecting the transparent wavelength region
  • 10.2 Models for the absorbing region
  • 10.3 Example: amorphous Si on glass, using the oscillator method
  • 10.4 Example: photoresist on Si, using the B-spline method.
  • 11. Metallic films
  • 11.1 Challenge of absorbing films
  • 11.2 Strategies for absorbing films.
  • 12. Multilayer thin film stacks
  • 12.1 Multilayer strategies
  • 12.2 Example: two layer organic stack, using "divide and conquer"
  • 12.3 Example: high-low optical stack, using "coupling"
  • References
  • Index.