Cargando…

Secondary ion mass spectrometry : applications for depth profiling and surface characterization /

Secondary ion mass spectrometry (SIMS) is a mass spectrometric technique for solid materials that can provide elemental analysis at parts per million sensitivity and lateral resolution of 50 nm. When those capabilities are combined with the ability to provide that analysis as a function of depth, SI...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stevie, F. A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2016.
Colección:Materials characterization and analysis collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Comparison of surface analytical techniques
  • 1.1 Common elemental surface analysis techniques
  • 1.2 Introduction to mass spectrometry
  • 1.3 Brief history of mass spectrometry and SIMS
  • 1.4 Types of mass spectrometry
  • 1.5 Rationale for SIMS
  • 1.6 Types of SIMS data
  • References.
  • 2. SIMS technique
  • 2.1 Interaction of ions with matter
  • 2.2 Sputtering process
  • 2.3 Sputtering yield
  • 2.4 Preferential sputtering
  • 2.5 Secondary ion yield
  • 2.6 Oxygen flood (oxygen leak, oxygen backfill)
  • 2.7 Matrix effects
  • References.
  • 3. Analysis parameters
  • 3.1 Parameters of interest for depth profiling
  • 3.2 Primary beam polarity and species
  • 3.3 Secondary ion polarity and species
  • 3.4 Primary beam energy
  • 3.5 Primary beam angle of incidence
  • 3.6 Primary beam current, raster size
  • 3.7 Secondary beam energy distribution, voltage offset
  • 3.8 Mass interferences, mass resolution
  • References.
  • 4. Instrumentation
  • 4.1 Vacuum system
  • 4.2 Overall instrument
  • 4.3 Ion sources
  • 4.4 Primary ion column
  • 4.5 Sample chamber and sample
  • 4.6 Secondary ion column and mass analyzers
  • 4.7 Detectors
  • 4.8 Focused ion beam SIMS (FIB-SIMS)
  • 4.9 Computers and data manipulation
  • 4.10 Related instruments
  • References.
  • 5. Depth profiling (dynamic SIMS)
  • 5.1 Raster and Gate
  • 5.2 Depth resolution
  • 5.3 Sputtering rate
  • 5.4 Nonuniform sputtering, sample rotation
  • 5.5 Detection limit, dynamic range, memory effect
  • 5.6 Count rate saturation, detector dead time
  • 5.7 Small area analysis
  • 5.8 Nonuniform distribution
  • 5.9 Image depth profile, lateral resolution
  • 5.10 Movement of species due to chemical effect
  • References.
  • 6. Quantification
  • 6.1 Need for secondary standards
  • 6.2 Depth profile quantification, relative sensitivity factors
  • 6.3 Ion implanted standards
  • 6.4 Bulk standards
  • 6.5 Matrix and trace quantification
  • 6.6 Useful yield
  • 6.7 Precision and accuracy
  • 6.8 Quantification in multiple matrixes, cesium cluster ions
  • 6.9 Static SIMS quantification
  • 6.10 RSF relationship with ionization potential and electron affinity
  • References.
  • 7. Surfaces, interfaces, multilayers, bulk
  • 7.1 Sample considerations
  • 7.2 Surface, static SIMS
  • 7.3 Interfaces
  • 7.4 Multilayers
  • 7.5 Back side analysis
  • 7.6 Bulk analysis
  • References.
  • 8. Insulators
  • 8.1 Sample charging
  • 8.2 Charge compensation methods
  • 8.3 Electron beam neutralization
  • 8.4 Species mobile under ion bombardment
  • 8.5 Buried insulators
  • 8.6 Electron stimulated desorption
  • 8.7 Summary
  • References.
  • 9. Residual and rare gas elements
  • 9.1 Residual gas elements, raster reduction
  • 9.2 Rare gas elements
  • References.
  • 10. Applications
  • 10.1 Semiconductors
  • 10.2 Organic materials
  • 10.3 Minerals, ceramics, catalysts
  • 10.4 Metals
  • References.
  • 11. Analysis approach
  • 11.1 Initial considerations
  • 11.2 Analysis sequence.