Cargando…

Episodes in Nineteenth and Twentieth Century Euclidean Geometry /

Euclidean geometry was worked out by Euclid and his predecessors more than 2300 years ago and is studied today mostly as a background to other branches of mathematics. In fact, however, as Professor Honsberger masterfully demonstrates, geometry in the style of Euclid is still alive and well. Mathema...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Honsberger, Ross
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Anneli Lax new mathematical library.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • copyright page
  • 1. Cleavers and Splitters
  • 2. The Orthocenter
  • 3. On Triangles
  • 4. On Quadrilaterals
  • Exercise Set 4
  • 5. A Property of Triangles
  • 1. The Property
  • 2. The Simson Line
  • 3. The Proof of the Property (John Rigby)
  • 4. A Corollary
  • 5. A Property of Parabolas
  • 6. The Fuhrmann Circle
  • 7. The Symmedian Point
  • Section 1
  • 2. Isogonal Lines and Points
  • Exercise
  • 3. The Symmedians and the Symmedian Point K
  • 4. Applications and Further Developments
  • References
  • Exercise Set 78. The Miquel Theorem
  • Section 1
  • 2. The Theorem of Miquel
  • 3. The Case of P_1, P_2, P_3 Collinear
  • 4. Simson Lines
  • 5. A Curious Angle Property
  • 9. The Tucker Circles
  • 1. Parallels and antiparallels
  • 2. The Lemoine circles
  • 3. The Tucker circles
  • 4. The center of a Tucker circle lies on the line KO
  • 5. The first Lemoine circle
  • 6. The Taylor Circle
  • Exercise Set 9
  • 10. The Brocards Points
  • 1. The Brocard Points
  • 2. The Brocard Angle
  • Exercise
  • Exercise
  • 3. The Brocard Circle
  • 4. The Brocard triangles5. The Steiner point and the Tarry point
  • 6. A property relating K, G, Omega, Omega'
  • 11. The Orthopole
  • Section 1
  • Section 2
  • 3. The Rigby Point
  • Exercise
  • 12. On Cevians
  • 1. Cevaâ€?s Theorem
  • Section 2
  • Section 3
  • 4. Harukiâ€?s Cevian theorem for circles
  • 13. The Theorem of Menelaus
  • Section 1
  • 2. Applications
  • Suggested Reading
  • Solutions to the Exercises
  • 1. Cleavers and Splitters
  • 2. The Orthocenter
  • 3. On Triangles
  • 4. On Quadrilaterals
  • 7. The Symmedian Point
  • 9. The Tucker Circles11. The Orthopole
  • Index