Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields /
"We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-functi...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society,
number 1295 |
Temas: |
Number theory
> Arithmetic algebraic geometry (Diophantine geometry) [See also 11Dxx, 14Gxx, 14Kxx]
> Abelian varieties of dimension $> 1$ [See also 14Kxx].
Number theory
> Arithmetic algebraic geometry (Diophantine geometry) [See also 11Dxx, 14Gxx, 14Kxx]
> Curves of arbitrary genus or genus $\ne 1$ over global fields [See also 14H25].
Number theory
> Arithmetic algebraic geometry (Diophantine geometry) [See also 11Dxx, 14Gxx, 14Kxx]
> $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture [See also 14G10]
Algebraic geometry
> Arithmetic problems. Diophantine geometry [See also 11Dxx, 11Gxx]
> Rational points.
|
Acceso en línea: | Texto completo |