Cargando…

Java Deep Learning Projects : Implement 10 Real-World Deep Learning Applications Using Deeplearning4j and Open Source APIs.

You will build full-fledged, deep learning applications with Java and different open-source libraries. Master numerical computing, deep learning, and the latest Java programming features to carry out complex advanced tasks. This book is filled with best practices/tips after every project to help you...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karim, Rezaul
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1044949296
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180721s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d NLE  |d CHVBK  |d OCLCO  |d OCLCQ  |d OCLCO  |d LVT  |d OCLCF  |d UKAHL  |d OCLCQ  |d UX1  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1175641884 
020 |a 9781788996525 
020 |a 1788996526 
020 |a 9781788997454 
020 |a 178899745X  |q (Trade Paper) 
024 3 |a 9781788997454 
029 1 |a AU@  |b 000066232876 
029 1 |a CHNEW  |b 001023897 
029 1 |a CHVBK  |b 530323532 
035 |a (OCoLC)1044949296  |z (OCoLC)1175641884 
037 |a B10335  |b 01201872 
050 4 |a QA76.73.J38  |b .K375 2018 
082 0 4 |a 005.133 
049 |a UAMI 
100 1 |a Karim, Rezaul. 
245 1 0 |a Java Deep Learning Projects :  |b Implement 10 Real-World Deep Learning Applications Using Deeplearning4j and Open Source APIs. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (428 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; A soft introduction to ML; Working principles of ML algorithms; Supervised learning; Unsupervised learning; Reinforcement learning; Putting ML tasks altogether; Delving into deep learning; How did DL take ML into next level?; Artificial Neural Networks; Biological neurons; A brief history of ANNs; How does an ANN learn?; ANNs and the backpropagation algorithm; Forward and backward passes; Weights and biases; Weight optimization; Activation functions. 
505 8 |a Neural network architecturesDeep neural networks; Multilayer Perceptron; Deep belief networks; Autoencoders; Convolutional neural networks; Recurrent neural networks ; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; DL frameworks and cloud platforms; Deep learning frameworks; Cloud-based platforms for DL; Deep learning from a disaster -- Titanic survival prediction; Problem description; Configuring the programming environment; Feature engineering and input dataset preparation; Training MLP classifier ; Evaluating the MLP classifier. 
505 8 |a Frequently asked questions (FAQs)Summary; Answers to FAQs; Chapter 2: Cancer Types Prediction Using Recurrent Type Networks; Deep learning in cancer genomics; Cancer genomics dataset description; Preparing programming environment; Titanic survival revisited with DL4J; Multilayer perceptron network construction; Hidden layer 1; Hidden layer 2; Output layer; Network training; Evaluating the model; Cancer type prediction using an LSTM network; Dataset preparation for training; Recurrent and LSTM networks; Dataset preparation; LSTM network construction; Network training; Evaluating the model. 
505 8 |a Frequently asked questions (FAQs)Summary; Answers to questions; Chapter 3: Multi-Label Image Classification Using Convolutional Neural Networks; Image classification and drawbacks of DNNs; CNN architecture; Convolutional operations; Pooling and padding operations; Fully connected layer (dense layer); Multi-label image classification using CNNs; Problem description; Description of the dataset; Removing invalid images; Workflow of the overall project; Image preprocessing; Extracting image metadata; Image feature extraction; Preparing the ND4J dataset. 
505 8 |a Training, evaluating, and saving the trained CNN modelsNetwork construction; Scoring the model; Submission file generation; Wrapping everything up by executing the main() method; Frequently asked questions (FAQs); Summary; Answers to questions; Chapter 4: Sentiment Analysis Using Word2Vec and LSTM Network; Sentiment analysis is a challenging task; Using Word2Vec for neural word embeddings; Datasets and pre-trained model description; Large Movie Review dataset for training and testing; Folder structure of the dataset; Description of the sentiment labeled dataset; Word2Vec pre-trained model. 
500 |a Sentiment analysis using Word2Vec and LSTM. 
520 |a You will build full-fledged, deep learning applications with Java and different open-source libraries. Master numerical computing, deep learning, and the latest Java programming features to carry out complex advanced tasks. This book is filled with best practices/tips after every project to help you optimize your deep learning models with ease. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Java. 
650 0 |a Application program interfaces. 
650 0 |a Machine learning. 
650 0 |a Application software  |x Development. 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Machine learning  |2 fast 
758 |i has work:  |a JAVA DEEP LEARNING PROJECTS;IMPLEMENT 10 REALRLD DEEP LEARNING APPLICATIONS USING DEEPLEARNING4J AND OPEN SOURCE APIS (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXTtXFrpDV69D3hrpx3Q83  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Karim, Rezaul.  |t Java Deep Learning Projects : Implement 10 Real-World Deep Learning Applications Using Deeplearning4j and Open Source APIs.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788997454 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5446048  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34796353 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5446048 
994 |a 92  |b IZTAP