Resonant MEMS : Fundamentals, Implementation, and Application.
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of thei...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2015.
|
Colección: | Advanced Micro and Nanosystems.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright; Contents; Series editor's preface; Preface; About the Volume Editors; List of Contributors; Part I: Fundamentals; Chapter 1 Fundamental Theory of Resonant MEMS Devices; 1.1 Introduction; 1.2 Nomenclature; 1.3 Single-Degree-of-Freedom (SDOF) Systems; 1.3.1 Free Vibration; 1.3.2 Harmonically Forced Vibration; 1.3.3 Contributions to Quality Factor from Multiple Sources; 1.4 Continuous Systems Modeling: Microcantilever Beam Example; 1.4.1 Modeling Assumptions; 1.4.2 Boundary Value Problem for a Vibrating Microcantilever.
- 1.4.3 Free-Vibration Response of Microcantilever1.4.4 Steady-State Response of a Harmonically Excited Microcantilever; 1.5 Formulas for Undamped Natural Frequencies; 1.5.1 Simple Deformations (Axial, Bending, Twisting) of 1D Structural Members: Cantilevers and Doubly Clamped Members (""Bridges""); 1.5.1.1 Axial Vibrations (Along x-Axis); 1.5.1.2 Torsional Vibrations (Based on hj") (Twist About x-Axis); 1.5.1.3 Flexural (Bending) Vibrations; 1.5.2 Transverse Deflection of 2D Structures: Circular and Square Plates with Free and Clamped Supports.
- 1.5.3 Transverse Deflection of 1D Membrane Structures (""Strings"")1.5.4 Transverse Deflection of 2D Membrane Structures: Circular and Square Membranes under Uniform Tension and Supported along Periphery; 1.5.5 In-Plane Deformation of Slender Circular Rings; 1.5.5.1 Extensional Modes; 1.5.5.2 In-Plane Bending Modes; 1.6 Summary; Acknowledgment; References; Chapter 2 Frequency Response of Cantilever Beams Immersed in Viscous Fluids; 2.1 Introduction; 2.2 Low Order Modes; 2.2.1 Flexural Oscillation; 2.2.2 Torsional Oscillation; 2.2.3 In-Plane Flexural Oscillation; 2.2.4 Extensional Oscillation.
- 2.3 Arbitrary Mode Order2.3.1 Incompressible Flows; 2.3.2 Compressible Flows; 2.3.2.1 Scaling Analysis; 2.3.2.2 Numerical Results; References; Chapter 3 Damping in Resonant MEMS; 3.1 Introduction; 3.2 Air Damping; 3.3 Surface Damping; 3.4 Anchor Damping; 3.5 Electrical Damping; 3.6 Thermoelastic Dissipation (TED); 3.7 Akhiezer Effect (AKE); References; Chapter 4 Parametrically Excited Micro- and Nanosystems; 4.1 Introduction; 4.2 Sources of Parametric Excitation in MEMS and NEMS; 4.2.1 Parametric Excitation via Electrostatic Transduction; 4.2.2 Other Sources of Parametric Excitation.
- 4.3 Modeling the Underlying Dynamics-Variants of the Mathieu Equation4.4 Perturbation Analysis; 4.5 Linear, Steady-State Behaviors; 4.6 Sources of Nonlinearity and Nonlinear Steady-State Behaviors; 4.7 Complex Dynamics in Parametrically Excited Micro/Nanosystems; 4.8 Combined Parametric and Direct Excitations; 4.9 Select Applications; 4.9.1 Resonant Mass Sensing; 4.9.2 Inertial Sensing; 4.9.3 Micromirror Actuation; 4.9.4 Bifurcation Control; 4.10 Some Parting Thoughts; Acknowledgment; References; Chapter 5 Finite Element Modeling of Resonators; 5.1 Introduction to Finite Element Analysis.