Cargando…

Novel Algorithms for Fast Statistical Analysis of Scaled Circuits

As VLSI technology moves to the nanometer scale for transistor feature sizes, the impact of manufacturing imperfections result in large variations in the circuit performance. Traditional CAD tools are not well-equipped to handle this scenario, since they do not model this statistical nature of the c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Singhee, Amith (Autor), Rutenbar, Rob A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Electrical Engineering, 46
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-90-481-3100-6
003 DE-He213
005 20220112231112.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9789048131006  |9 978-90-481-3100-6 
024 7 |a 10.1007/978-90-481-3100-6  |2 doi 
050 4 |a TK7867-7867.5 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
072 7 |a TJFC  |2 thema 
082 0 4 |a 621.3815  |2 23 
100 1 |a Singhee, Amith.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Novel Algorithms for Fast Statistical Analysis of Scaled Circuits  |h [electronic resource] /  |c by Amith Singhee, Rob A. Rutenbar. 
250 |a 1st ed. 2009. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2009. 
300 |a XV, 195 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Electrical Engineering,  |x 1876-1119 ;  |v 46 
505 0 |a SiLVR: Projection Pursuit for Response Surface Modeling -- Quasi-Monte Carlo for Fast Statistical Simulation of Circuits -- Statistical Blockade: Estimating Rare Event Statistics -- Concluding Observations. 
520 |a As VLSI technology moves to the nanometer scale for transistor feature sizes, the impact of manufacturing imperfections result in large variations in the circuit performance. Traditional CAD tools are not well-equipped to handle this scenario, since they do not model this statistical nature of the circuit parameters and performances, or if they do, the existing techniques tend to be over-simplified or intractably slow. Novel Algorithms for Fast Statistical Analysis of Scaled Circuits draws upon ideas for attacking parallel problems in other technical fields, such as computational finance, machine learning and actuarial risk, and synthesizes them with innovative attacks for the problem domain of integrated circuits. The result is a set of novel solutions to problems of efficient statistical analysis of circuits in the nanometer regime. In particular, Novel Algorithms for Fast Statistical Analysis of Scaled Circuits makes three contributions: 1) SiLVR, a nonlinear response surface modeling and performance-driven dimensionality reduction strategy, that automatically captures the designer's insight into the circuit behavior, by extracting quantitative measures of relative global sensitivities and nonlinear correlation. 2) Fast Monte Carlo simulation of circuits using quasi-Monte Carlo, showing speedups of 2× to 50× over standard Monte Carlo. 3) Statistical blockade, an efficient method for sampling rare events and estimating their probability distribution using limit results from extreme value theory, applied to high replication circuits like SRAM cells. 
650 0 |a Electronic circuits. 
650 0 |a Artificial intelligence-Data processing. 
650 0 |a Electronic digital computers-Evaluation. 
650 1 4 |a Electronic Circuits and Systems. 
650 2 4 |a Data Science. 
650 2 4 |a System Performance and Evaluation. 
700 1 |a Rutenbar, Rob A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048131013 
776 0 8 |i Printed edition:  |z 9789048130993 
776 0 8 |i Printed edition:  |z 9789400736870 
830 0 |a Lecture Notes in Electrical Engineering,  |x 1876-1119 ;  |v 46 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-90-481-3100-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)