Cargando…

Operator-Valued Measures and Integrals for Cone-Valued Functions

Integration theory deals with extended real-valued, vector-valued, or operator-valued measures and functions. Different approaches are applied in each of these cases using different techniques. The order structure of the (extended) real number system is used for real-valued functions and measures, w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Roth, Walter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1964
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Integration theory deals with extended real-valued, vector-valued, or operator-valued measures and functions. Different approaches are applied in each of these cases using different techniques. The order structure of the (extended) real number system is used for real-valued functions and measures, whereas suprema and infima are replaced with topological limits in the vector-valued case. A novel approach employing more general structures, locally convex cones, which are natural generalizations of locally convex vector spaces, is introduced here. This setting allows developing a general theory of integration which simultaneously deals with all of the above-mentioned cases.
Descripción Física:X, 356 p. online resource.
ISBN:9783540875659
ISSN:1617-9692 ;