Cargando…

Multiple Instance Learning Foundations and Algorithms /

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Herrera, Francisco (Autor), Ventura, Sebastián (Autor), Bello, Rafael (Autor), Cornelis, Chris (Autor), Zafra, Amelia (Autor), Sánchez-Tarragó, Dánel (Autor), Vluymans, Sarah (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-47759-6
003 DE-He213
005 20220113131312.0
007 cr nn 008mamaa
008 161108s2016 sz | s |||| 0|eng d
020 |a 9783319477596  |9 978-3-319-47759-6 
024 7 |a 10.1007/978-3-319-47759-6  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Herrera, Francisco.  |e author.  |0 (orcid)0000-0002-7283-312X  |1 https://orcid.org/0000-0002-7283-312X  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multiple Instance Learning  |h [electronic resource] :  |b Foundations and Algorithms /  |c by Francisco Herrera, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-Tarragó, Sarah Vluymans. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 233 p. 46 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Multiple Instance Learning -- Multi-Instance Classification -- Instance-Based Classification Methods -- Bag-Based Classification Methods -- Multi-Instance Regression -- Unsupervised Multiple Instance Learning -- Data Reduction -- Imbalance Multi-Instance Data -- Multiple Instance Multiple Label Learning. 
520 |a This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included. This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined. Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools. 
650 0 |a Artificial intelligence. 
650 0 |a Computer vision. 
650 0 |a Algorithms. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computer Vision. 
650 2 4 |a Algorithms. 
700 1 |a Ventura, Sebastián.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Bello, Rafael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Cornelis, Chris.  |e author.  |0 (orcid)0000-0002-7854-6025  |1 https://orcid.org/0000-0002-7854-6025  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zafra, Amelia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sánchez-Tarragó, Dánel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vluymans, Sarah.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319477589 
776 0 8 |i Printed edition:  |z 9783319477602 
776 0 8 |i Printed edition:  |z 9783319838151 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-47759-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)