From Particle Systems to Partial Differential Equations II Particle Systems and PDEs II, Braga, Portugal, December 2013 /
This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second mee...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Springer Proceedings in Mathematics & Statistics,
129 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Part I Mini-Courses: C. Bernardin: Diffusion of energy in chains of oscillators with conservative noise
- V. Giovangigli: Dissipative reactive fluid models from the kinetic theory
- Part II Short Papers: D. Bessam: Large deviations in a Gaussian setting: the role of the Cameron-Martin space
- F. Carvalho, J.K. Polewczak and A.J. Soares: Kinetic theory of simple reacting spheres: an application to coloring processes
- W. De Roeck and F. Huveneers: Can translation invariant systems exhibit a many-body localized phase?
- P. Duarte and M.J. Torres: Stability of non-deterministic systems
- P. Goncalves: Derivation of the Stochastic Burgers equation from the WASEP
- E. Luçon: Large population asymptotics for interacting diffusions in a quenched random environment
- D. Madjarevic: Shock structure and temperature overshoot in macroscopic multi-temperature model of binary mixtures
- A. Nota: Diffusive limit for the random Lorentz gas.-M.J. Oliveira and R.V. Mendes: Fractional Boson gas and fractional Poisson measure in infinite dimensions
- M.P. Ramos, A.J. Soares: Dynamical properties of a cosmological model with diffusion
- S. Simic: The structure of shock waves in dissipative hyperbolic models
- M. Simon: Diffusion coefficient for the disordered harmonic chain perturbed by an energy conserving noise
- G.M. Schütz: Conditioned stochastic particle systems and integrable quantum spin systems.