Cargando…

Text Mining From Ontology Learning to Automated Text Processing Applications /

This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining, and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Biemann, Chris (Editor ), Mehler, Alexander (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Theory and Applications of Natural Language Processing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-12655-5
003 DE-He213
005 20220117215619.0
007 cr nn 008mamaa
008 141219s2014 sz | s |||| 0|eng d
020 |a 9783319126555  |9 978-3-319-12655-5 
024 7 |a 10.1007/978-3-319-12655-5  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Text Mining  |h [electronic resource] :  |b From Ontology Learning to Automated Text Processing Applications /  |c edited by Chris Biemann, Alexander Mehler. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 238 p. 50 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theory and Applications of Natural Language Processing,  |x 2192-0338 
505 0 |a Foreword -- PART I. Text Mining Techniques and Methodologies.-  Thomas Eckart, Dirk Goldhahn, and Uwe Quasthoff: Building large resources for text mining -- Hristo Tanev: Learning Textologies: Networks of Linked Word Clusters -- Zornitsa Kozareva: Simple, Fast and Accurate Taxonomy Learning -- Patrick Oesterling, Christian Heine, Gunther H. Weber and Gerik Scheuermann: A Topology-Based Approach to Visualize the Thematic Composition of Document Collections -- Alexander Mehler, Tim vor der Brück, Rüdiger Gleim and Tim Geelhaar: Towards a Network Model of the Coreness of Texts; An Experiment in Classifying Latin Texts using the TTLab Latin Tagger -- PART II. Text Mining Applications. Stefan Bordag and Christian Hänig and Christian Beutenmüller: A structuralist approach for personal knowledge exploration systems on mobile devices -- Frank Oemig and Bernd Blobel: Natural Language Processing Supporting Interoperability in Healthcare -- Veronica Perez-Rosas, Cristian Bologa, Mihai Burzo and Rada Mihalcea: Deception Detection Within and Across Cultures -- Jonathan Sonntag and Manfred Stede: Sentiment Analysis: What's your Opinion? -- Marten Düring and Antal van den Bosch: Multi-perspective Event Detection in Texts Documenting the 1944 Battle of Arnhem -- Marco Büchler, Philip R. Burns, Martin Müller, Emily Franzini and Greta Franzini: Towards a Historical Text Re-use Detection. 
520 |a This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining, and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite to build lexical resources such as dictionaries and ontologies, and also has direct applications in automated text processing in fields such as history, healthcare and mobile applications, just to name a few. This volume gives an update in terms of the recent gains in text mining methods and reflects the most recent achievements with respect to the automatic build-up of large lexical resources. It addresses researchers that already perform text mining, and those who want to enrich their battery of methods. Selected articles can be used to support graduate-level teaching. The book is suitable for all readers that completed undergraduate studies of computational linguistics, quantitative linguistics, computer science and computational humanities. It assumes basic knowledge of computer science and corpus processing as well as of statistics. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Application software. 
650 0 |a Digital humanities. 
650 0 |a Information technology-Management. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Digital Humanities. 
650 2 4 |a Computer Application in Administrative Data Processing. 
700 1 |a Biemann, Chris.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mehler, Alexander.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319126562 
776 0 8 |i Printed edition:  |z 9783319126548 
776 0 8 |i Printed edition:  |z 9783319359304 
776 0 8 |i Printed edition:  |z 9783030301293 
830 0 |a Theory and Applications of Natural Language Processing,  |x 2192-0338 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-12655-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)